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Abstract

We propose a bidimensional algorithm for the numerical discretization of a diphasic low Mach number (DLMN) sys-
tem in the case of a potential approximation, the extension to the tridimensional geometry being natural. In this algorithm,
we capture the interface separating two immiscible fluids on a fixed cartesian mesh with an interface capturing algorithm.
This algorithm solves a transport equation applied to an Heaviside function with a non-diffusive scheme i.e. with a scheme
diffusing on a number of cells which is independent of the time integration. To take into account the artificial mixture area
produced by this numerical diffusion, we have previously extended the DLMN system to the case of a mixture. Numerical
results show that the algorithm is accurate and stable since the thickness of the artificial mixture area is always bounded by
a constant which is of the order of the cell size, even in the case of important deformations of the interface, and since the
numerical solution converges toward a good thermodynamic equilibrium with a decreasing of the entropy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The diphasic low Mach number (DLMN) system [14,17] models non-stationary deformations of an inter-
face separating two immiscible fluids induced by large temperature differences at low Mach number. The
domain of application of the DLMN system concerns the direct numerical simulation of the diphasic flow
in a nuclear reactor. Indeed, numerical simulations at the scale of bubbles coupled to experimental studies
[11] may be a tool to justify average models at coarse scales.

The DLMN system is derivated in [14] and is a generalization of a system proposed by Majda in [32,33,35]
which models combustion phenomena at low Mach number. In [10], it is proposed a similar model. Let us note
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that the Majda’s model is similar to the Sivashinsky’s model studied in [42] (see also [39] in the case of a mon-
ophasic flow constituted of a perfect gas). The DLMN system is obtained through an asymptotic expansion
applied to the diphasic compressible Navier–Stokes system which filters out the acoustic waves. This technique
is identical to the one which allows to formally derive the incompressible Navier–Stokes system from the com-
pressible Navier–Stokes system [34].

The DLMN system is an intermediate system between the diphasic compressible and incompressible
Navier–Stokes systems. More exactly, the DLMN system is a non-homogeneous diphasic incompressible
Navier–Stokes system since the divergence of the velocity field is not equal to zero because of the large tem-
perature differences which induce compressibility effects. The DLMN system keeps the notions of equations of
state and of entropy oppositely to the diphasic incompressible Navier–Stokes system. Nevertheless, under
appropriate modelling hypothesies in one of the two fluids, the DLMN system is equal in this fluid to the
incompressible Navier–Stokes system coupled to a simple heat equation [14]. An important characteristic
of the DLMN system – which directly comes from the filter out of the acoustic waves – is that the thermody-
namic pressure is an average thermodynamic pressure which does not depend on the space variable. This char-
acteristic allows to recover at the continuous level some natural results concerning the dilation or the
compression of a bubble at low Mach number [14]. Moreover, the DLMN system has a simple structure in
monodimensional (1D) geometry since the velocity field solution of the 1D DLMN system is potential and,
thus, completely decoupled from the momentum equation [14]. This property is of course also valid for the
Majda’s model [32,42].

On the other hand, the filter out of the acoustic waves implies that the time scale of the DLMN system is
only based on the time scale associated to the fluid velocity and, thus, does not depend on the time scale asso-
ciated to the acoustic waves celerity. As a consequence, the time step of any numerical discretization of the
DLMN system is of the order of the time scale associated to the fluid velocity, as it is the case for the incom-
pressible Navier–Stokes system. Oppositely, the time scale of the compressible Navier–Stokes system is based
on the acoustic waves celerity at low Mach number. As a consequence, we need to solve implicitly the com-
pressible Navier–Stokes system to have a time step based on the fluid velocity. Nevertheless, implicit com-
pressible Navier–Stokes solvers still can be inefficient at low Mach number since the more the Mach
number is low, the more the resulting linear system is ill-conditioned [37]. As a consequence, we need to
use preconditioning techniques and very efficient iterative algorithms to solve such linear systems [30]. Of
course, due to the elliptic part of the DLMN system, any discretization of the DLMN system implies also
the resolution of a linear system. Nevertheless, the conditioning of this linear system does not depend on
the Mach number.

The first theme of this paper is to study in detail numerical difficulties in a DLMN solver which may be
induced by the fact that the equations of state and the thermal conductivities are not continuous functions
and by the fact that the initial temperature differences are large. A possible way to study in detail such diffi-
culties is to focus on the diphasic thermodynamic character rather than on the diphasic thermody-
namic + dynamic character of the DLMN system by supposing that the velocity field is potential: we thus
define the potential DLMN system. This hypothesis splits the momentum equation from the DLMN system
which allows to eliminate the numerical difficulties coming from the dynamical character of the DLMN sys-
tem. This study is important. Indeed, we will show that it may appear strong numerical instabilities when the
initial temperature differences are large. For the potential DLMN system (and when the two fluids are perfect
gases), we theoretically explain the origin of these numerical instabilities and we propose a cure through the
notion of entropic correction. This correction allows to obtain an entropic property at the discrete level and is
inspired from a numerical scheme solving a kinetic equation and preserving a discrete H-theorem [6,12]. We
wish to underline that these instabilities would be also present in the no-potential DLMN system and that it
would have been more difficult to obtain similar theoretical results in the case of this system. Let us also under-
line that the potential approximation of the DLMN system keeps the elliptic character of the DLMN system
since the velocity field is deduced from a Poisson equation. Moreover, mathematical considerations show that
the potential DLMN system should be useful to obtain existence and uniqueness results before studying the
(no-potential) DLMN system [15,21,22]. Of course, we will have to couple in a future work the numerical res-
olution of the momentum equation to the algorithm proposed in this paper by using the approaches proposed,
for example, in [7,8,26].
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The second theme of that paper concerns the interface capturing algorithm. Indeed, to discretize the
DLMN system in bidimensional geometry (2D), we have to transport a surface R(t) defining the interface
between the two immiscible fluids in a 2D bounded domain X. This implies that we have to develop a
2D interface tracking algorithm (front tracking and VOF methods enter in this class [4,23,25,27,28,45,46])
or a 2D interface capturing algorithm (the level set method [29,36,38,41] and the algorithm proposed in this
paper enter in this class). See [45] for definitions of interface tracking and interface capturing algorithms. An
interface tracking algorithm is lagrangian in the sense that for a front tracking algorithm, the interface R(t) is
explicitly represented by a connected set of points moving on the 2D mesh with the velocity flow, and in the
sense that for a VOF algorithm, the interface R(t) is geometrically reconstructed at each time step and prop-
agated with a lagrangian scheme to avoid numerical smearing. At the opposite, an interface capturing algo-
rithm is eulerian in the sense that the interface R(t) is never explicitly represented or geometrically
reconstructed. The difficulty induced by this eulerian approach is that it necessarily appears an incertitude
on the position of R(t) at each time step since we can only deduce from the eulerian algorithm that the sur-
face R(t) is inside a discretized domain MDxðtÞ included in X (Dx defining the cell size in X). Of course, if the
numerical scheme is convergent, the more the interface capturing algorithm is accurate, the less the volume
of MDxðtÞ is important for a given Dx. In [45], front tracking algorithms are considered to be more accurate
than VOF and interface capturing algorithms. This idea comes from the fact that a front tracking algorithm
represents explicitly the interface (without any geometrical reconstruction). Nevertheless, as it is underlined
in [45], the major drawback of an interface tracking algorithm is its algorithmic complexity and the difficulty
to take into account important topological changes of R(t); moreover, additional complications arise in tri-
dimensional geometry (3D) [45]. On the other hand, a VOF algorithm is designed to take into account
important topological changes of R(t) and seems to be more simple than a front tracking algorithm from
an algorithmic point of view [25]. Nevertheless, a VOF algorithm includes a geometrical reconstruction algo-
rithm which can be computationally expensive [23] and whose algorithmic complexity is more important in
3D than in 2D. At the opposite, an interface capturing algorithm takes into account topological changes
without any special treatment of the algorithm and the 3D extension is natural. Thus, we think that when
the topological changes are important and when the geometry is 3D, the rate accuracy over complexity of the

algorithm of an interface capturing algorithm may be at least equal to the one of any interface tracking algo-
rithms. Moreover, the increasing of the power of computers allows to use for 2D or 3D problems meshes
finer than before.

Since the deformations of R(t) modeled by the (potential or no-potential) DLMN system may be important
and 3D, we choose to develop an interface capturing algorithm. To overcome the difficulty coming from the
incertitude on the position of R(t) induced by this eulerian approach – cf. the domain MDxðtÞ – and to avoid
the use of any numerical tuning to keep the stability and the accuracy of the 2D scheme, we build the algo-
rithm by following two steps. The first step concerns the stability and the consistency of the algorithm; the sec-
ond step is related to the accuracy of the algorithm. These two steps are the following:

� the aim of the first step is to replace the previous notion of incertitude by the notion of artificial mixture

area. In other words, we now consider that the domain MDxðtÞ defines a discretized artificial mixture area

where the fluids 1 and 2 are mixed and, thus, where it is impossible to define any interface R(t). This implies
that we have to introduce at the continuous level a DLMN-M system extending the DLMN system to the
case of a Mixture. Of course, this DLMN-M system will have to satisfy two constraints at the continuous
level (at least formally): the first one is that the DLMN-M system remains well-posed; the second one is that
for any mixture domain MeðtÞ included in X – the variable e > 0 defining the thickness of the mixture area
at the continuous level – any solution of the DLMN-M system converges to the solution of the DLMN
system in X when e goes to zero. These two constraints will be (formally) satisfied by introducing appro-
priate closure laws at the continuous level in the mixture area MeðtÞ;
� the aim of the second step is to control during the transient regime the volume of the domain MDxðtÞ by a

constant C(Dx) of the order of Dx. This property is essential since it implies that the discretized artificial
mixture area MDxðtÞ remains always tiny compared to X and is uniformly controlled in time (that is to
say, the constant C(Dx) does not depend on the integration time). Thus, we can expect that the algorithm
gives the approximate position of R(t) with a high accuracy since the interface R(t) is included in MDxðtÞ. In
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other words, we can say that we want to minimize the incertitude of the position of R(t) during the transient
regime. This second step will be achieved by transporting a Heaviside function with the non-diffusive
scheme proposed by Després and Lagoutière in [18,19,31] and adapted to our context.

It is important to note that this two-steps approach was successfully applied by Lagoutière in [20,31] in the
case of the diphasic compressible Euler system. Kokh used also the notion of artificial mixture area in [1,2,29]
although the interface capturing algorithm was not based on the Després–Lagoutière’s non-diffusive scheme.
To our opinion, the major advantage of this two-steps approach is that we define a 2D algorithm in a well-
defined mathematical framework in the sense that we do not use any numerical tuning to control the stability
– cf. first step – and the accuracy – cf. second step – of the 2D algorithm. Thus, we think that we can be con-
fident on the validity of the numerical results obtained in this paper. Let us also underline that the 3D exten-
sion of this 2D algorithm is natural and that the algorithmic complexity of this interface capturing algorithm is
low.

It is useful to recall that the 2D interface capturing algorithm based on the level set approach [29,36,38,41]
allows also to take into account important topological changes, the 3D extension being also natural. The basic
idea of this approach comes from the fact that, at the continuous level, the position of the interface R(t) can be
deduced from the zero level set of any continuous function w(t,x) advected by the velocity field. Thus, at the
discretized level, the sign of the function w(t,x) defines the two sub-domains X1(t) and X2(t) defining the two
immiscible fluids. This interface capturing is simple. Nevertheless, for stability reasons, the sign function has
to be regularized at each time step [38]. The aim of this regularization is to create at the discretized level a smooth
transition area cMeðtÞ between X1(t) and X2(t) whose thickness e is also uniformly controlled. In fact, e is of the
order of Dx and is arbitrarily imposed at the beginning of the simulation (let us note that the interface tracking
algorithm regularizes also the interface although the position of R(t) is explicit [45]). Thus, we can think that this
transition area cMeðtÞ is similar to our artificial mixture area MDxðtÞ. But, this is not at all the case since the tran-

sition area cMeðtÞ does not evolve through the discretization of a system of partial differential equations including the

modeling of a transition area oppositely to the mixture area MDxðtÞ: the transition area cMeðtÞ is directly created at
each time step by a numerical tuning i.e. by the regularization procedure and the parameter e. Moreover, we
have to reinitialize the level set function at some regular time steps to keep a good accuracy [38] (this reinitial-
ization keeps the function w(t,x) close to the distance function to the interface R(t)). Although this reinitializa-
tion increases the accuracy of the interface capturing algorithm, it also introduces in 2D and 3D new incertitudes
on the position of the interface R(t), incertitudes that can be controlled with again another numerical tuning [40].
At last, although this 2D algorithm is as simple as our 2D algorithm (if we forget that it uses numerical tunings),
it seems a priori difficult to obtain an entropic property oppositely to our algorithm since the transition area
MDxðtÞ is treated by a mixture model included in the partial differential equations.

Nevertheless, an important property of the level set approach is that it is easy to take into account surface
tension phenomena modeled in the spirit of [5]. Indeed, the surface tension depends in that case on the normal
nR(t) to the interface R(t) which is directly related to the level set function w(t,x) through the formula
nRðtÞ ¼ rwðt;xÞ

krwðt;xÞkjx2RðtÞ. But, in our algorithm, the interface R(t) is described by a discretized Heaviside function
which is very sharp and not by a discretized continuous function w(t,x). Thus, it would be important to study
the possibility to obtain a good approximation of the normal nR(t) when the surface R(t) is deduced from a
sharp discretized Heaviside function. This important point is not studied in that paper.

The outline of this paper is the following:
In Section 2, we recall the diphasic low Mach number (DLMN) system introduced in [14]. Then, we gen-

eralize this system when there exists a mixture area by introducing the DLMN-M system and we introduce the
potential approximation of the DLMN-M system.

In Section 3, we propose a numerical scheme on a 2D cartesian mesh for the resolution of the potential
DLMN-M system. Firstly, we introduce the entropic correction and we prove in a simple case that the scheme
satisfies an entropic property when we correct the numerical thermal fluxes with this correction. Secondly, we
describe the 2D interface capturing algorithm by adapting to our context the Després–Lagoutière’s non-dif-
fusive scheme proposed in [18,19,31]. Let us underline that this interface capturing algorithm does not depend
on the potential character of the DLMN system discretized in this paper and, thus, could be also applied for
the discretization of the (no-potential) DLMN system.
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In Section 4, we firstly show that the 2D interface capturing algorithm is accurate by solving the 2D non-
linear hyperbolic-elliptic system proposed in [15]. This system is interesting to test the accuracy of any (2D or
3D) interface tracking or interface capturing algorithm since it can model strong vibrations of any surface R(t)
and since the volume VðtÞ bounded by R(t) is also solution of an ordinary differential equation which can be
solved explicitly. Moreover, the mathematical structure of this system is similar to the mathematical structure
of the potential DLMN-M system. Secondly, we numerically show that the 2D algorithm solving the potential
DLMN-M system is stable and accurate in the case of perfect gases, the thickness of the artificial mixture area
being almost constant and lower than three cells, and the numerical solution converging toward a good ther-
modynamic equilibrium. The numerical results show also that the entropic correction is necessary at least for
the proposed test cases.

2. The DLMN system

We recall in Section 2.1 the DLMN system and two important lemmas associated to this system. The details
of the derivation of the DLMN system from the diphasic compressible Navier–Stokes system are written in
[14]. Then, we extend in Section 2.3 this DLMN system and these two lemmas to the case of a diphasic mix-
ture. This extension is important for the derivation of the 2D numerical algorithm in Section 3 even if we focus
in that paper on the case of two immiscible fluids: see the two-steps approach presented in Section 1. At last, we
introduce in Section 2.4 the potential approximation of the DLMN system. This approximation – which comes
from an operators splitting – allows to focus on the diphasic thermodynamic character rather than on the
diphasic thermodynamic + dynamic character of the DLMN system.

2.1. The DLMN system in the case of two immiscible fluids

The DLMN system is written in the case of two immiscible fluids. It is constituted with the two coupled
systems
DtY ¼ 0; ðaÞ

b�1DtT ¼
P 0ðtÞ
P ðtÞ T þ 1

aP
r � ðkrT Þ ðbÞ

8<: ð1Þ
and
r � u ¼ G; ðaÞ
qDtu ¼ �rPþr � r� qg: ðbÞ

�
ð2Þ
In the system (1) and (2), t P 0 is the time variable, x 2 X is the space variable where X is a bounded lipschitz-
ian open domain included in Rd (d = 1, 2 or 3). The operator Dt :¼ ot + u Æ $ is the lagrangian derivative oper-
ator. The function G(t,x) is given by
Gðt; xÞ ¼ � 1

C
� P
0ðtÞ

P ðtÞ þ
b

PðtÞr � ðkrT Þ ð3Þ
and the thermodynamic pressure P(t) is solution of the integro-differential equation
P 0ðtÞ ¼

Z
X

bðY ; T ; P Þr � ðkrT Þ dxZ
X

dx
CðY ; T ; P Þ

: ð4Þ
Let us remark that Eq. (4) is equivalent to the Neumann compatibility condition
Z
X

Gðt; xÞ dx ¼ 0: ð5Þ
The relation (5) is important to obtain the unicity of a solution of the DLMN system.
The functions a(Y,T,P), b(Y,T,P) and C(Y,T,P) will be defined below in each fluid k with (12): they char-

acterize the thermodynamic properties of the diphasic flow. For example, when the fluid k is a perfect gas
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whose c-constant is equal to ck, these functions are respectively equal in the fluid k to 1/T, (ck � 1)/ck and ck

(see Section 4.2). The vector g ¼ 9:81ẑ m s�2 is the gravity (̂z is the unitary vector in the vertical direction) and
k(Y,T,P) is the thermal conductivity. The quantities q(Y,T,P), T, P, P and u are, respectively, the density, the
temperature, the thermodynamic pressure, the dynamic pressure and the fluid velocity. The viscosity tensor r is
defined with the Newton law
r ¼ l � ruþ ðruÞt � 2

3
ðr � uÞI

� �
ð6Þ
(I is the d · d unitary matrix) where l(Y,T,P) is the fluid viscosity. The function Y(t,x) takes its values in
{0,1} knowing that the initial condition Y(t = 0,x) is given by
Y ðt ¼ 0; xÞ ¼
1 if x 2 X1 ðt ¼ 0Þ ði:e: fluid 1Þ;
0 if x 2 X2 ðt ¼ 0Þ ði:e: fluid 2Þ;

�
ð7Þ
Xk(t = 0) 6¼ ; defining the initial topology of the diphasic flow (k 2 {1,2}). Let us remark that (1)(a) and (7)
impose that for any ðt; xÞ 2 Rþ � X, Y(t,x) 2 {0,1}. Thus, we can define the two domains X1(t) and X2(t) at
any time t P 0 with X1(t) = {x 2 X such that Y(t,x) = 1} and X2(t) = {x 2 X such that Y(t,x) = 0}. The func-
tion Y(t,x) can be seen as the color function of the fluid 1 whose discontinuity surface R(t) = oX1(t) \ oX2(t)
localizes at any time t P 0 the interface between the fluids 1 and 2 (we have X = X1(t) [ X2(t) [ R(t)). The
boundary conditions are defined with
8x 2 oX : uðt; xÞ ¼ 0; ðaÞ
rT ðt; xÞ � nðxÞ ¼ 0 ðbÞ

�
ð8Þ
and with
8x 2 RðtÞ : ujR1ðtÞ ¼ ujR2ðtÞ; ðaÞ
rjR1ðtÞ � n1!2 ¼ rjR2ðtÞ � n1!2; ðbÞ
T jR1ðtÞ ¼ T jR2ðtÞ; ðcÞ
krT jR1ðtÞ � n1!2 ¼ krT jR2ðtÞ � n1!2: ðdÞ

8>>><>>>: ð9Þ
The notation /jRkðtÞ corresponds to the extension on the surface R(t) of the restriction of the function /(t,x) to
the open domain Xk(t). The vector n1!2 is the unitary normal vector to the surface R(t) exterior to X1. The
vector n is the unitary normal vector to the surface oX exterior to X. Let us note that under the boundary
condition (8)(b), Eq. (4) is equivalent to the equationZ
P 0ðtÞ ¼ RðtÞ
½b�RðtÞðT ; P ÞkrT � n1!2 dRZ

X

dx
CðY ; T ; P Þ

�

Z
X

ob
oT
ðY ; T ; P ÞkðY ; T ; P ÞðrT Þ2 dxZ

X

dx
CðY ; T ; PÞ

ð10Þ
with [b]R(T,P) :¼ b1(T,P)jR � b2(T,P)j R. The first term in the right-hand side of (10) is due to the disconti-
nuity of the equations of state at the interface R(t); the second term is equal to zero when the two fluids
are perfect gases (b is a constant in that case: see Section 4.2).

The system (1) is a mixed hyperbolic + ‘‘parabolic’’ system and the system (2) is a non-homogeneous dipha-
sic incompressible Navier–Stokes system. To close the system (1)–(9), it remains to define the functions
k(Y,T,P), l(Y,T,P), q(Y,T,P), a(Y,T,P), b(Y,T,P), C(Y,T,P). Because of the immiscible character of the

diphasic flow, all these functions are deduced from the simple formula
nðY ; T ; P Þ ¼ Y n1ðT ; P Þ þ ð1� Y Þn2ðT ; P Þ;
n 2 fk; l; q; a; b;Cg;
Y 2 f0; 1g:

8><>: ð11Þ
The functions kk (conductivity) and lk (viscosity) characterize the transport properties of each fluid k; the
functions ak, bk and Ck characterize the thermodynamic properties of each fluid k and are defined with the
formulas
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akðT ; P Þ ¼ �
1

qk
� oqk

oT
ðT ; P Þ; ðaÞ

bkðT ; P Þ ¼
akP

qkCp;k
ðT ; P Þ; ðbÞ

CkðT ; P Þ ¼
qkc2

k

P
ðT ; PÞ: ðcÞ

8>>>>>><>>>>>>:
ð12Þ
The function ak(T,P) is the compressibility coefficient at constant pressure of the fluid k (also called thermal or
volumic expansion coefficient); the functions bk and Ck are dimensionless functions. The calorific capacity at
constant pressure Cp,k(T,P) and the sound velocity ck(T,P) are given by
Cp;kðT ; PÞ ¼
ohk

oT
ðT ; P Þ; ðaÞ

ckðT ; P Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oqk

oP
� a2

kT
Cp;k

s �1

ðT ; P Þ ðbÞ

8>>><>>>: ð13Þ
where hk :¼ ek + P/qk is the enthalpy, ek(T,P) being the internal energy of the fluid k. The functions qk(T,P)
and ek(T,P) are the equations of state of the fluid k. Thus, the DLMN system (1)–(13) is closed as soon as we
know analytically or experimentally the four functions kk(T,P), lk(T,P), qk(T,P) and ek(T,P).

Let us underline that Y, T, u, P and P are the five unknowns of the five Eqs. (1)–(4). The functions
n(Y,T,P) where n 2 {k,l,q,a,b,C} can be considered as physical parameters depending on the unknown
(Y,T,P) through the formula (11), the functions nk(T,P), k 2 {1, 2} being given functions characterizing the
physical properties of each fluid k.

2.2. Thermodynamic hypothesis and properties of the DLMN system

It is important to note that the system
b�1DtT ¼
P 0ðtÞ
P ðtÞ T þ 1

aP
r � ðkrT Þ; ðaÞ

r � u ¼ G ðbÞ

8<: ð14Þ
(cf. Eqs. (1)(b) and (2)(a) of the DLMN system) and the system
otðqeÞ þ r � ðqeÞ ¼ �P ðtÞr � uþr � ðkrT Þ; ðaÞ
otqþr � ðquÞ ¼ 0; ðbÞ

�
ð15Þ
where e(Y,T,P) is defined with (11) are equivalent under the thermodynamic hypothesis:

Hypothesis 2.1. The equations of state sk(T,P) :¼ 1/qk(T,P) and ek(T,P) of each fluid k 2 {1,2} are such that
there exists a function sk(sk, ek) verifying
skðsk; ekÞ is a strictly convex function; ðaÞ
�T dsk ¼ dek þ P dsk: ðbÞ

�
ð16Þ
The function sk(sk,ek) is the classical thermodynamic entropy of the fluid k. A direct consequence of the equiv-
alence between the systems (14) and (15) is the following lemma:

Lemma 2.1. Under the thermodynamic Hypothesis 2.1, the DLMN system verifies
d

dt

Z
XkðtÞ

qkðT ; P Þðt; xÞ dx ¼ 0 for k 2 f1; 2g; ðaÞ

d

dt

Z
X

qeðY ; T ; P Þðt; xÞ dx ¼ 0; ðbÞ

8>><>>: ð17Þ
where e(Y,T,P) is defined with (11).

Moreover, the DLMN system verifies also the entropic property:
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Lemma 2.2. Under the thermodynamic Hypothesis 2.1, the DLMN system verifies
d

dt
SðY ; T ; P ÞðtÞ 6 0
where the total entropy SðY ; T ; P Þ is defined with
SðY ; T ; P ÞðtÞ ¼
Z

X
qsðY ; T ; P Þðt; xÞ dx ð18Þ
knowing that the entropy s(Y,T,P) is given by the formula (11). And, any equilibrium characterized by the equi-

librium interface R1 – i.e. by the equilibrium color function Y1 – is a solution of the minimization problem
SðY1; T1; P1Þ ¼ min
T ðxÞ;P

SðY1; T ; P Þ ð19Þ
under the constraintsZ8

Xk

qkðT ; P ÞðxÞ dx ¼Mk for k 2 f1; 2g; ðaÞZ
X

qeðY ; T ; P ÞðxÞ dx ¼ E; ðbÞ

T ðxÞ > 0 and P > 0; ðcÞ
Xk such that oX1 \ oX2 ¼ R1; ðdÞ

>>>>>><>>>>>>:
ð20Þ
Mk and E being strictly positive constants defined by the initial conditions. Moreover, the equilibrium

(T1(x),P1) is unique and T1(x) is a strictly positive constant T1.

These two lemmas are important since they allow to obtain (at least formally) that the DLMN system (1)–
(13) is asymptotically stable when the time t goes to infinity which means that (T,P)(t,x) goes to a well defined
and stable equilibrium (T1(x) = T1 > 0,P1 > 0) when t! +1. Let us note that the thermodynamic
Hypothesis 2.1 is a sufficient condition to prove that the sound velocity ck(T,P) given by (13)(b) is well defined:

in other words, the quantity oqk
oP �

a2
k T

Cp;k
is strictly positive when (16) is verified. This property is a consequence of

the Godunov–Mock theorem [24] (indeed, the compressible Euler system is hyperbolic under the Hypothesis
2.1). We wish to underline that without the thermodynamic Hypothesis 2.1, the system (15) is not a priori
equivalent to (14). But, the system (15) is always (formally) equivalent to the system
bb�1DtT ¼

P 0ðtÞ
P ðtÞ T þ 1baP

r � ðkrT Þ; ðaÞ

r � u ¼ � 1bC � P
0ðtÞ

P ðtÞ þ
b

PðtÞr � ðkrT Þ: ðbÞ

8>><>>: ð21Þ
In this system, baðY ; T ; PÞ, bbðY ; T ; P Þ and bCðY ; T ; PÞ are still given by (11). But, bakðT ; P Þ, bbkðT ; PÞ and bCkðT ; P Þ
are now given by8
 bakðT ; P Þ ¼

1� qk
ohk
oP

T
ðT ; P Þ; ðaÞ

bbkðT ; P Þ ¼
bakP

qkCp;k
ðT ; P Þ; ðbÞ

bCkðT ; P Þ ¼
qkbc2

k

P
ðT ; P Þ ðcÞ

>>>>>><>>>>>>:
ð22Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir �1
with the sound velocity bckðT ; P Þ ¼ oqk
oP �

akbakT
Cp;k

ðT ; PÞ (the function b(Y,T,P) in (21)(b) is again defined with

(11) and (12)). Thus, the system (21) allows to define a DLMN system which verifies Lemma 2.1 without the
thermodynamic Hypothesis 2.1. Nevertheless, this DLMN system does not verified a priori any lemma similar
to Lemma 2.2. We recall that Lemma 2.2 is essential to obtain a stable equilibrium when t! +1. We have
numerically shown in [14] that the DLMN system may be ill-posed when the thermodynamic Hypothesis 2.1 is
not satisfied. Thus, in that paper, we will always suppose that the thermodynamic Hypothesis 2.1 is satisfied.
Of course, under the thermodynamic Hypothesis 2.1, we can prove that formulas (12)(a) and (22)(a) are equiv-
alent which implies that the systems (14) and (21) are equivalent in that case.
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2.3. Extension in the case of a mixture: the DLMN-M system

In this subsection, we extend the DLMN system defined with (1)–(13) when there exists a mixture area i.e.
when the function Y(t,x) takes its values in [0,1] and not only in {0,1}. This extension is important even if the
aim of this paper is to propose a numerical scheme for the DLMN system i.e. in the case of two immiscible

fluids. Indeed, any numerical eulerian scheme used to discretize the hyperbolic equation (1)(a) implies that
when the initial condition Y(t = 0,x) takes its values in {0,1}, after one time step, the discretized function
Y(t > 0,x) takes its values in [0,1] because of the numerical diffusion (see also the two-steps approach detailed
in Section 1). Thus, we now define the discrete domain MDxðtÞ :¼ fx 2 X where Y ðt; xÞ 2�0; 1½g where Dx char-
acterizes the cell size in X. In our approach, the domain MDxðtÞ defines a discretized artificial mixture area

where the ‘‘DLMN system’’ should be well-posed. The key point is to modify the formula (11) in such a
way it is possible to obtain two lemmas equivalent to Lemmas 2.1 and 2.2 when Y 2 [0, 1]. From now, the
function Y may not be seen as the color function of the fluid 1 but as the mass fraction of the fluid 1.

The DLMN system with a Mixture area – the DLMN-M system – is defined with the Eqs. (1)–(8) and with
closure laws defining the functions k, l, q, a, b and C when Y 2 [0, 1]. These closure laws will be a priori dif-
ferent from the closure laws (11)–(13).

2.3.1. Closure laws for the functions k(Y,T, P) and l(Y, T,P)

The physical coefficients k(Y,T,P) and l(Y,T,P) are defined with the formula
nðY ; T ; P Þ ¼ Y n1ðT ; P Þ þ ð1� Y Þn2ðT ; PÞ if Y 2 f0; 1g; ðaÞ
nðY ; T ; P Þ 2 ½minðn1ðT ; PÞ; n2ðT ; P ÞÞ;maxðn1ðT ; P Þ; n2ðT ; PÞÞ� if Y 2�0; 1½; ðbÞ
nðY ; T ; P Þ is a regular function with respect to Y 2 ½0; 1�; ðcÞ
n 2 fk; lg: ðdÞ

8>>>><>>>>: ð23Þ
As soon as the functions x ´ T(t,x) and x ´ u(t,x) solution of the DLMN-M system are C2(X) functions,
this formula allows to formally recover the boundary condition (9) on the interface R(t) when the volume
of the mixture area goes to zero. Of course, for numerical applications, we have to precise the formula
(23)(b). Let us just note that among many possibilities, the two formulas
nðY ; T ; P Þ ¼ Y n1ðT ; P Þ þ ð1� Y Þn2ðT ; P Þ for any Y 2 ½0; 1� ð24Þ

and
1

nðY ; T ; P Þ ¼
Y

n1ðT ; P Þ
þ ð1� Y Þ

n2ðT ; PÞ
for any Y 2 ½0; 1� ð25Þ
are compatible with (23). In that paper, we do not discuss on the best formulas defining k and l in the dis-
cretized mixture area when n1� n2 for example. In Section 4, we will choose (n1,n2) such that
Oðn1Þ ¼ Oðn2Þ. In that case, all formulas compatible with (23) are equivalent. For sake of simplicity, we will
use the formula (24) in Section 4.

2.3.2. Closure laws for the thermodynamic functions q, a, b and C
We replace the formulas (11)–(13) with
aðY ; T ; P Þ ¼ � 1

q
� oq
oT
ðY ; T ; P Þ; ðaÞ

bðY ; T ; P Þ ¼ aP
qCp

ðY ; T ; P Þ; ðbÞ

CðY ; T ; PÞ ¼ qc2

P
ðY ; T ; P Þ; ðcÞ

8>>>>>>><>>>>>>>:
ð26Þ
where
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CpðY ; T ; P Þ ¼
oh
oT
ðY ; T ; P Þ; ðaÞ

cðY ; T ; PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oq
oP
� a2T

Cp

s �1

ðY ; T ; P Þ ðbÞ

8>>><>>>: ð27Þ
with h :¼ e + P/q. The functions q(Y,T,P) :¼ 1/s(Y,T,P) and e(Y,T,P) are given through the closure law
sðY ; T ; P Þ ¼ Y s1ðT ; P Þ þ ð1� Y Þs2ðT ; P Þ; ðaÞ
eðY ; T ; P Þ ¼ Y e1ðT ; P Þ þ ð1� Y Þe2ðT ; P Þ: ðbÞ

�
ð28Þ
The functions q(Y,T,P) and e(Y,T,P) define the mixture equations of state. Let us recall that
sk(T,P) :¼ 1/qk(T,P) and ek(T,P)(T,P) are given functions.

Thus, the DLMN-M system – which corresponds to the system (1)–(8) + (23)–(28) – is now closed. Let us
note that the Neumann compatibility condition (5) is again valid and equivalent to (4).

2.3.3. Some remarks on the closure laws (26)–(28)

Having before defined the functions ak, bk and Ck with (12) and (13), it is natural to define a, b and C with
the formulas (26) and (27) in the mixture area. Nevertheless, it is important to note that the formulas (26)–(28)
are only equivalent to the formulas (11)–(13) when Y 2 {0,1} i.e. when there is no mixture area. In other
words, the DLMN and DLMN-M systems are equivalent when the mixture area does not exist. This property
is of course necessary to obtain the convergence of the solution of the DLMN-M system toward the solution
of the DLMN system when the volume of the mixture area goes to zero (this corresponds to the consistency
property of the first step of the two-steps approach exposed in Section 1).

Moreover, we easily deduce from the closure law (28) that the formulas (26)(a) and (27)(a) are equivalent to
the formulas
aðY ; T ; P Þ ¼ zðY ; T ; P Þa1ðT ; PÞ þ ½1� zðY ; T ; PÞ�a2ðT ; P Þ; ðaÞ
CpðY ; T ; P Þ ¼ YCp;1ðT ; P Þ þ ð1� Y ÞCp;2ðT ; PÞ ðbÞ

�
ð29Þ
when Y 2 [0,1], z being the volumic fraction of the fluid 1 defined with zðY ; T ; P Þ ¼ Y s1ðT ;P Þ
sðT ;PÞ . The equation (29)(b)

is obtained by noting that h :¼ e + P/q and (28) imply that h = Yh1 + (1 � Y)h2.
The formulas (28) are classical closure laws used to close the diphasic compressible Euler system [13,31].

The closure law (28)(a) corresponds to the hypothesis that in the mixture area, the two fluids are immiscible
although we do not have any information on the exact position of the interface R(t) (see the introduction in
[31]): in other words, the closure law (28)(a) is a basic homogeneization formula. The closure law (28)(b) is
linked to the extensive character of the internal energy. At last, we suppose in (28) that each fluid k has the
same thermodynamic pressure and temperature in the mixture. To summarize, the closure law (28) corre-
sponds to the isobar-isotherm closure law applied to an homogeneized mixture of two immiscible fluids.
Although we could a priori closed the DLMN-M system with other closure laws, this isobar-isotherm
hypothesis seems to us natural since the DLMN system is such that the thermodynamic pressure P does
not depend on the space variable and such that the temperature T is a continuous function at the interface
R(t) (cf. (9)(c)).

2.3.4. Basic properties of the DLMN-M system

The main advantage of the closure law (28) comes from the following lemma [31]:

Lemma 2.3. Under the thermodynamic Hypothesis 2.1 and under the closure law (28), the mixture entropy
s(Y,T,P) = Ys1(T,P) + (1 � Y)s2(T, P) can also be seen as a function of (Y,s,e) verifying
sðY ; s; eÞ is a strictly convex function of ðs; eÞ; ðaÞ
�T ds ¼ deþ P ds when dY ¼ 0: ðbÞ

�
ð30Þ
As in the case of the DLMN system (i.e. without mixture), this lemma allows to write that the systems (14)
and (15) are equivalent. As a consequence, we obtain conservation properties which are a transposition of
Lemma 2.1 to the case of the DLMN-M system:
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Lemma 2.4. Under the thermodynamic Hypothesis 2.1, the DLMN-M system verifies
d

dt

Z
X

Y qðY ; T ; P Þðt; xÞ dx ¼ 0; ðaÞ

d

dt

Z
X
ð1� Y ÞqðY ; T ; P Þðt; xÞ dx ¼ 0; ðbÞ

d

dt

Z
X

qeðY ; T ; P Þðt; xÞ dx ¼ 0: ðcÞ

8>>>>>><>>>>>>:
ð31Þ
This lemma shows that we have again a mass conservation property for each fluid k although we have lost the
interface notion in the DLMN-M system, this notion being hidden in the mixture closure law (28)(a).

We have also the transposition of Lemma 2.2 when there exists a mixture area:

Lemma 2.5. Under the thermodynamic Hypothesis 2.1, the DLMN-M system verifies the Lemma 2.2 by

replacing the constraints (20) with the constraints
Z
X

Y qðY ; T ; PÞðxÞ dx ¼M1; ðaÞZ
X
ð1� Y ÞqðY ; T ; P ÞðxÞ dx ¼M2; ðbÞZ

X
qeðY ; T ; PÞðxÞ dx ¼ E; ðcÞ

T ðxÞ > 0 and P > 0; ðdÞ
Y ðxÞ ¼ Y1ðxÞ 2 ½0; 1�: ðeÞ

8>>>>>>>>>><>>>>>>>>>>:
ð32Þ
Because of relations (30), the proof of Lemma 2.5 is identical to the proof of Lemma 2.2.
Lemma 2.3 – which extends the thermodynamic Hypothesis 2.1 in the mixture area – and Lemmas 2.4 and

2.5 – which are the extensions of Lemmas 2.1 and 2.2 in the mixture area – allow to be confident on the well-
posed character of the DLMN-M system. Let us underline that, due to Lemma 2.3, the sound velocity
c(Y,T,P) in the mixture area defined with (27)(b) is well defined. To obtain this result, we can use an extension
of the Godunov–Mock theorem in the case of a mixture [31].

2.4. The potential DLMN-M system

We now define the potential approximation of the DLMN-M system by using an operators splitting. The
starting point is to note that any field u(x) 2 L2(X) can be decomposed with
uðxÞ ¼ wðxÞ þ rUðxÞ where r � w ¼ 0;

rU � njoX ¼ u � njoX;

w � njoX ¼ 0

8><>: ð33Þ
which corresponds to the Hodge decomposition [9]. The fields w and $U are, respectively, the solenoidal (free
divergence) and potential parts of the field u. The decomposition (33) is unique (up to a constant for the po-
tential U). By decomposing the velocity field u(t,x) of the DLMN-M system with (33) and by injecting this
decomposition in the system (2) and in the boundary condition (8)(a), we obtain the system
DU ¼ G; ðaÞ
rU � njoX ¼ 0 ðbÞ

�
ð34Þ
coupled to the non-homogeneous diphasic incompressible Navier–Stokes system
r � w ¼ 0; ðaÞ
qDtw ¼ �rPþr � r� qg � qDtrU; ðbÞ
w � njoX ¼ 0; ðcÞ
w � sjoX ¼ �rU � sjoX ðdÞ

8>>><>>>: ð35Þ
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where s is the tangential vector to the boundary oX and where
Dt :¼ ot þ ðwþrUÞ � r:

Eq. (34) describes the diphasic thermodynamic character of the DLMN-M system; the system (35) describes
the diphasic dynamic character of the DLMN-M system. Of course, this two characters are coupled. Let us
underline that when $U ” 0, the system (35) coupled to (1)(a) and (11) is the diphasic incompressible Na-
vier–Stokes system whose numerical discretization was studied with interface tracking techniques
[4,23,25,27,28,45,46] or with the level set approach in [38]. To focus on numerical difficulties coming from
the diphasic thermodynamic character of the DLMN-M system, we split the system (35) from the DLMN-
M system. Thus, we suppose that:

Hypothesis 2.2. The velocity field u(t,x) is potential.

This hypothesis allows to obtain the system
DtY ¼ 0; ðaÞ

b�1DtT ¼
P 0ðtÞ
P ðtÞ T þ 1

aP
r � ðkrT Þ ðbÞ

8<: ð36Þ
coupled to
DU ¼ G; ðaÞ
rU � njoX ¼ 0 ðbÞ

�
ð37Þ
with now
Dt :¼ ot þrU � r

since u(t,x) = $U(t,x). The system (36) and (37) defines the potential approximation of the DLMN-M system.
Of course, this system is closed with Eqs. (3), (4), (8)(b) and (23)–(28). Moreover, Lemmas 2.3–2.5 are still
verified. Let us remark that we can add in Lemma 2.5 only in the case of the potential DLMN-M system that
u(t,x)! 0 when (T,P) converges to the equilibrium (T1,P1) since G! 0 coupled to (37) implies that
$U! 0.

Let us underline that the potential approximation of the DLMN-M keeps the elliptic character of the

DLMN system since the velocity field is deduced from the Poisson equation (37). Moreover, any solution U
of the elliptic equation (37) is unique (up to a constant) because of the Neumann compatibility condition
(5) (cf. the Fredholm alternative). And, as soon as x ´ G(t,x) is in L1(X), standard elliptic regularity results
show that x ´ $U(t,x) is a continuous function. Thus, the velocity field u :¼ $U is unique and continuous.

Remark on Hypothesis 2.2

Of course, Hypothesis 2.2 is not valid from a physical point of view. Nevertheless, the splitting (34) and (35)
is useful from a theoretical and numerical point of view. Indeed, this splitting is useful to obtain existence and
uniqueness results for the Majda’s low Mach number system [21,22,34,35]: this could be also the case for the
DLMN system. More precisely, it is natural to firstly obtain existence and uniqueness results for the potential
approximation of the DLMN system before studying the (no-potential) DLMN system. We think that this is
also the case at the numerical point of view in the sense that any good DLMN solver will have necessarily to be
a good DLMN solver in the potential case. In Sections 3 and 4, we will show that it can appear strong numer-
ical instabilities when the initial temperature differences are large, and we will propose and justify a cure by
studying the discretization of the potential DLMN system. These instabilities would also appear with the
no-potential DLMN solver.

3. Discretization of the potential DLMN-M system

We now propose a 2D numerical scheme for the discretization of the potential DLMN-M system. For sake
of simplicity, we suppose that the 2D open domain X is equal to ]xmin,xmax[·]ymin,ymax [ where xmin, xmax, ymin

and ymax are four reals; it would be possible to define a more complicated oX but it would complicate the nota-
tions because of the boundary conditions on oX. Moreover, such a rectangular domain is representative of a
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section of a 2D pipe in a nuclear reactor. The time subscript is equal to n and the time step is equal to Dt. The
2D spatial mesh is supposed to be cartesian. The space and interface subscripts in the x direction are, respec-
tively, defined with i and i + 1/2; the same quantities are defined in the y direction by replacing i with j. The cell
size is equal to Dx in the x direction and to Dy in the y direction.

The 3D extension of the 2D algorithm proposed in this section – including the interface capturing algorithm

proposed in Section 3.4 – is natural, and all the properties written in 2D are also verified for the 3D extension.

3.1. Formulation of the 2D scheme

We discretize the system (36) and (37) with
Y nþ1
i;j ¼ Y n

i;j � Dt �TY ðUn; Y nÞi;j; ðaÞ

T nþ1
i;j ¼ T n

i;j þ Dt � �TT ðUn; T nÞi;j þ bn
i;j

P0ðY n; T n; P nÞ
P n T n

i;j þ
bDT ðY n; T nÞi;j

an
i;jP

n

 !" #
ðbÞ

8>><>>: ð38Þ
and
DDx;DyðUnÞ ¼ Gn: ð39Þ

The discrete operators TY ðU; Y Þ and TT ðU; T Þ, respectively, discretize the continuous operators $U Æ $Y and
$U Æ $T. The discrete operator bDT ðY ; T Þ discretizes the diffusion operator $ Æ (k$T). In (39), DDx,Dy(U) is the
classical 2D discrete laplacian operator on a 2D cartesian mesh with Neumann boundary conditions. It is de-
fined with
DDx;DyðUÞ ¼
Ui�1;j � 2Ui;j þ Uiþ1;j

Dx2
þ Ui;j�1 � 2Ui;j þ Ui;jþ1

Dy2
when the cell (i, j) does not have any interface belonging to the boundary oX. When one interface belongs to
oX – let us say the interface (i � 1/2,j) – the discrete operator DDx,Dy is given by
DDx;DyðUÞ ¼
�Ui;j þ Uiþ1;j

Dx2
þ Ui;j�1 � 2Ui;j þ Ui;jþ1

Dy2
:

Let us underline that DDx,Dy is simple because the mesh is supposed to be cartesian. Using formula (3), we de-
fine the vector ðGn

i;jÞi;j with
Gn
i;j ¼ �

1

Cn
i;j

�P
0ðY n; T n; P nÞ

P n þ
bn

i;j

P n �DT ðY n; T nÞi;j ð40Þ
where P0ðY n; T n; P nÞ approximates the quantity P 0(tn). As bDT ðY ; T Þ, the discrete operator DT ðY ; T Þ discretizes
the diffusion operator $ Æ (k$T); DT and bDT are not equal for reasons which will be exposed in Section 3.3.
The equation (39) – whose the unknown is the vector ðUn

i;jÞi;j – is solved with a conjugate gradient method
or with a discrete fast Fourier transform. At last, the thermodynamic pressure is given by the scheme
P nþ1 ¼ }ðY n; Y nþ1; T n; T nþ1; P nÞ ð41Þ

by noting that ðY nþ1

i;j Þi;j and ðT nþ1
i;j Þi;j were previously computed with the explicit scheme (38) and (39). Of

course, the quantity }(Yn,Yn+1,Tn,Tn+1,Pn) is an estimation of P(tn+1). Let us underline that an
i;j, bn

i;j and
Cn

i;j are, respectively, equal to aðY n
i;j; T

n
i;j; P

nÞ, bðY n
i;j; T

n
i;j; P

nÞ and CðY n
i;j; T

n
i;j; P

nÞ, the functions a(Y,T,P),
b(Y,T,P) and C(Y,T,P) being deduced from the mixture equations of state q(Y,T,P) and e(Y,T,P) (see
26,27,29). Moreover, the conductivity kn

i;j is equal to kðY n
i;j; T

n
i;j; P

nÞ where k(Y,T,P) is compatible with (23)
(k(Y,T,P) may be given by (24) for example, which will be the case in Section 4).

The operators P0ðY n; T n; P nÞ and }(Yn,Yn+1,Tn,Tn+1,Pn) are given in Section 3.2. The operators DT ðY ; T Þ,bDT ðY ; T Þ and TT ðU; T Þ are given in Section 3.3. The operator TY ðU; Y Þ is given in Section 3.4 and defines the
2D interface capturing algorithm.
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3.2. The operators P0ðY n; T n; P nÞ and }(Yn,Yn+1,Tn,Tn+1,Pn)

We firstly define the discrete operator P0ðY n; T n; P nÞ. Secondly, we propose three different schemes defining
}(Yn,Yn+1,Tn,Tn+1,Pn).

3.2.1. The operator P0ðY n; T n; P nÞ
We define P0ðY n; T n; P nÞ with
P0ðY n; T n; P nÞ ¼
P

i;jb
n
i;j �DT ðY n; T nÞi;jDxDyP

i;j

Dx Dy
Cn

i;j

: ð42Þ
This formula is of course consistent with (4). Moreover, (40) and (42) show that
X
i;j

Gn
i;jDx Dy ¼ 0 ð43Þ
which is a discretized version of the Neumann compatibility condition (5). Condition (43) implies that the dis-
crete elliptic equation (39) admits an unique solution ðUn

i;jÞi;j up to a constant (in other words, the matrix
DDx, Dy is invertible in the subspace orthogonal to the identity vector). Thus, the 2D discrete potential velocity
field (u,v) given by
un
iþ1=2;j :¼

Un
iþ1;j � Un

i;j

Dx
; ðaÞ

vn
i;jþ1=2 :¼

Un
i;jþ1 � Un

i;j

Dy
ðbÞ

8>><>>: ð44Þ
is well defined and satisfies the boundary condition (8)(a) on oX. Let us remark that the 2D velocity field is
defined on a staggered grid as in [26].

3.2.2. The operator }(Yn,Yn+1,Tn,Tn+1,Pn)

There are three possible numerical schemes (see also [14] in the 1D lagrangian case). The two first schemes
conserve respectively the mass and the energy, and are implicit (except when the two fluids are perfect gases:
see Section 4). The last scheme does not conserve the mass and the energy but is explicit.

Conservative scheme in mass:
Using Eqs. (31)(a) and (b), we can evaluate the pressure Pn+1 = } through one of the three non-linear

equations
P
i;j

Y nþ1
i;j qðY nþ1

i;j ; T nþ1
i;j ; }ÞDxDy ¼

P
i;j

Y n
i;jqðY n

i;j; T
n
i;j; P

nÞDxDy; ðaÞP
i;j
ð1� Y nþ1

i;j ÞqðY nþ1
i;j ; T

nþ1
i;j ; }ÞDxDy ¼

P
i;j
ð1� Y n

i;jÞqðY n
i;j; T

n
i;j; P

nÞDxDy; ðbÞP
i;j

qðY nþ1
i;j ; T

nþ1
i;j ; }ÞDxDy ¼

P
i;j

qðY n
i;j; T

n
i;j; P

nÞDxDy ðcÞ

8>>>><>>>>: ð45Þ
as soon as ðY ; T Þnþ1
i;j is known. The non-linear equations (45)(a), (b) or (c) implicitly define three possible oper-

ators } with
P nþ1 ¼ }ðY n; Y nþ1; T n; T nþ1; P nÞ where } is the unique strictly positive solution of ð45ÞðaÞ; ðbÞ or ðcÞ:
ð46Þ
By using Eqs. (45)(a), (b) or (c), the scheme is respectively conservative for the mass of fluid 1, for the mass of
fluid 2 or for the total mass. Nevertheless, this scheme is never conservative for the mass of fluid 1 and for the
mass of fluid 2. These three schemes do not conserve the energy.
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Conservative scheme in energy:
Using the same approach, we can see that the discrete version
X

i;j

qeðY nþ1
i;j ; T

nþ1
i;j ; }ÞDxDy ¼

X
i;j

qeðY n
i;j; T

n
i;j; P

nÞDxDy ð47Þ
of Eq. (31)(c) allows to implicitly defines another operator } with
P nþ1 ¼ }ðY n; Y nþ1; T n; T nþ1; P nÞ where } is the unique strictly positive solution of the equation ð47Þ:
ð48Þ
This scheme is conservative in energy but does not conserve the mass of any fluid.

Non-conservative scheme in mass and in energy:
Having previously define the operator P0ðY n; T n; P nÞ with (42), we can also define the explicit operator }

with

P nþ1 ¼ }ðY n; Y nþ1; T n; T nþ1; P nÞ ¼ }ðY n; T n; P nÞ where }ðY n; T n; P nÞ :¼ P n þ Dt �P0ðY n; T n; P nÞ: ð49Þ
The scheme (49) is explicit but cannot be conservative in mass or in energy. Moreover, the time step Dt has to
verify

n

Dt < � P
P0ðY n; T n; P nÞ when P0ðY n; T n; P nÞ < 0 ð50Þ
in such a way the pressure Pn+1 remains strictly positive.

3.3. The operators DT ðY ; T Þ, bDT ðY ; T Þ and TT ðU; T Þ, and the entropic correction

We now define DT ðY ; T Þ. Then, we define bDT ðY ; T Þ and TT ðU; T Þ. The operator bDT ðY ; T Þ is not equal to
DT ðY ; T Þ despite DT ðY ; T Þ and bDT ðY ; T Þ discretize the same continuous operator $ Æ (k$T). Indeed, we have to
introduce an entropic correction in bDT ðY ; T Þ in such a way ðT n

i;j; P
nÞ converges to a good discrete equilibrium

ðT1i;j ¼ T1 > 0; P1 > 0Þ when n goes to infinity (see Lemma 2.5).

3.3.1. The operator DT ðY ; T Þ
We define the discrete diffusion operator with the classical conservative formula
DT ðY ; T Þi;j ¼
Fx

DT
ðY ; T Þiþ1=2;j �Fx

DT
ðY ; T Þi�1=2;j

Dx
þ
Fy

DT
ðY ; T Þi;jþ1=2 �Fy

DT
ðY ; T Þi;j�1=2

Dy
ð51Þ
where8

Fx

DT
ðY ; T Þiþ1=2;j ¼ kiþ1=2;j �

T iþ1;j � T i;j

Dx
; ðaÞ

Fy
DT
ðY ; T Þi;jþ1=2 ¼ ki;jþ1=2 �

T i;jþ1 � T i;j

Dy
: ðbÞ

>><>>: ð52Þ
When the interface (i + 1/2,j) (or (i,j + 1/2)) belongs to oX we impose Tx
DT
ðY ; T Þiþ1=2;j ¼ 0 (or

Ty
DT
ðY ; T Þi;jþ1=2 ¼ 0) (if the boundary condition (8)(b)). In (52), the conductivities ki+1/2,j and ki,j+1/2 may

be defined for example with the formulas
kiþ1=2;j ¼
kiþ1;j þ ki;j

2
;

ki;jþ1=2 ¼
ki;jþ1 þ ki;j

2

8><>: ð53Þ
or with the formulas
2

kiþ1=2;j
¼ 1

kiþ1;j
þ 1

ki;j
;

2

ki;jþ1=2

¼ 1

ki;jþ1

þ 1

ki;j
:

8>><>>: ð54Þ
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When the mixture conductivity ki,j :¼ k(Yi,j,Ti,j,P) is given by the formula (24) or by the formula (25), it seems
to us natural to use, respectively, the formula (53) or (54). In Section 4, we use the formula (53) since we define
k(Y,T,P) with (24). Let us underline that when Oðk1ðT ; P ÞÞ ¼ Oðk2ðT ; P ÞÞ – which is the case for the numerical
applications in Section 4 – all average formulas are equivalent. Nevertheless, it should not be the case when
Oðk1ðT ; P ÞÞ � Oðk2ðT ; PÞÞ: this point is not studied in this paper.

3.3.2. The operators bDT ðY ; T Þ and TT ðU; T Þ, and the entropic correction

Numerical results in Section 4 show that when bDT ðY ; T Þ :¼ DT ðY ; T Þ, the entropy SðY n; T n; P nÞ may not
decrease which could imply that ðT n

i;j; P
nÞ does not converge toward a good equilibrium (T1,P1) when n

goes to infinity: in other words, Lemma 2.5 may not be true at the discrete level whenbDT ðY ; T Þ :¼ DT ðY ; T Þ. This means that we have to modify the formulas (51) and (52) with an entropic cor-

rection to define the operator bDT ðY ; T Þ in such a way we recover the decreasing of the entropy. By studying
the 2D algorithm at the semi-discrete level (i.e. continuous-in-time and discrete-in-space), we can explicit the
entropic correction when the two fluids are perfect gases verifying b1 = b2: see Lemma 3.2. Although this
entropic correction is obtained in a particular case, we expect that this entropic correction gives also good
numerical results for other equations of state verifying the thermodynamic Hypothesis 2.1, especially in
the case of van der Waals equations of state (which can model liquid and gas phases). Let us note that,
in Section 4, we numerically show that the proposed entropic correction gives also good results for two per-
fect gases verifying b1 6¼ b2.

Definition of the operators bDT ðY ; T Þ and TT ðU; T Þ:

Let us define the transport operator TT ðU; T Þ with the formula
TT ðU; T Þi;j ¼Tx
T ðU; T Þi;j þTy

T ðU; T Þi;j ð55Þ
where
Tx
T ðU; T Þi;j ¼

1

2
uiþ1=2;j �

T iþ1;j � T i;j

Dx
þ ui�1=2;j �

T i;j � T i�1;j

Dx

� �
; ðaÞ

Ty
T ðU; T Þi;j ¼

1

2
ui;jþ1=2 �

T i;jþ1 � T i;j

Dy
þ ui;j�1=2 �

T i;j � T i;j�1

Dy

� �
ðbÞ

8>>><>>>: ð56Þ
knowing that the discrete velocity field is given by (44), and let us define the diffusion operator bDT ðY ; T Þ
with
bDT ðY ; T Þi;j ¼
cFx

DT
ðY ; T Þi;jiþ1=2;j �cFx

DT
ðY ; T Þi;ji�1=2;j

Dx
þ
cFy

DT
ðY ; T Þi;ji;jþ1=2 �cFy

DT
ðY ; T Þi;ji;j�1=2

Dy
ð57Þ
where
cFx
DT
ðY ; T Þi;jiþ1=2;j ¼ fðT Þi;jiþ1=2;j �Fx

DT
ðY ; T Þiþ1=2;j; ðaÞ

cFy
DT
ðY ; T Þi;ji;jþ1=2 ¼ fðT Þi;ji;jþ1=2 �F

y
DT
ðY ; T Þi;jþ1=2: ðbÞ

8><>: ð58Þ
The discrete quantities fðT Þi;jiþ1=2;j and fðT Þi;ji;jþ1=2 are the entropic corrections introduced in the discrete diffusion
operator bDT ðY ; T Þi;j in the cell (i, j), and converge to 1 when Dx and Dy converge to zero (i.e. when Ti+1,j! Ti,j

and Ti,j+1! Ti,j). They will be defined in Lemma 3.2 with (67) (or more explicitly with (69)). The necessity to
correct the discrete diffusion operator DT ðY ; T Þ in the temperature equation (38)(b) with the corrective terms
fðT Þi;jiþ1=2;j and fðT Þi;ji;jþ1=2 will clearly appear in Corollary 3.1. Let us underline that these correction terms could
make non-conservative the discrete operator bDT ðY ; T Þi;j since fðT Þi;jiþ1=2;j and fðT Þi;ji;jþ1=2 may, respectively, be dif-
ferent from fðT Þiþ1;j

iþ1=2;j and fðT Þi;jþ1
i;jþ1=2. This last point has not to be a priori seen as a ‘‘strange characteristic’’ of

the scheme since the continuous equation (36)(b) is not a conservative equation (in other words, the quantityR
X T dx is not conserved; see Lemma 2.4 for the conserved quantities).
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Computation of the entropic correction f(T) and entropic properties of the scheme:
The necessity to correct the discrete diffusion operator DT ðY ; T Þ in (38)(b) with the corrective terms

fðT Þi;jiþ1=2;j and fðT Þi;ji;jþ1=2 is explained in the case of two perfect gases satisfying b1 = b2. In that situation,
we have P 0(t) = 0 – thus, P(t P 0) = P(t = 0) = P0 – a(Y,T,P0) = 1/T, and b(Y,T,P0), C(Y,T,P0) are two
strictly positive constants (see Section 4).

We have the following result whose proof is immediate:

Lemma 3.1. When the two fluids are perfect gases verifying b1 = b2 :¼ b where b is a strictly positive constant,

the system (36) and (37) with the boundary conditions (8)(b) and (9)(c)(d) is given by
otY þ jkðY ; T ; P 0ÞrT � rY ¼ 0; ðaÞ
otT þ jkðY ; T ; P 0ÞðrT Þ2 ¼ jTr � ½kðY ; T ; P 0ÞrT �; ðbÞ
rT ðt; xÞ � nðxÞjoX ¼ 0; ðcÞ
T jR1ðtÞ ¼ T jR2ðtÞ; ðdÞ
krT jR1ðtÞ � n1!2 ¼ krT jR2ðtÞ � n1!2 ðeÞ

8>>>>>><>>>>>>:
ð59Þ
where j :¼ b/P0 is a strictly positive constant. Moreover, the system (59) is equivalent to the system
otY þ jkðY ; l�1; P 0Þrl�1 � rY ¼ 0; ðaÞ
otl ¼ jr � ½kðY ; l�1; P 0Þr log l�; ðbÞ
rlðt; xÞ � nðxÞjoX ¼ 0; ðcÞ
ljR1ðtÞ ¼ ljR2ðtÞ; ðdÞ
krljR1ðtÞ � n1!2 ¼ krljR2ðtÞ � n1!2 ðeÞ

8>>>>>><>>>>>>:
ð60Þ
with
l ¼ 1

T
: ð61Þ
Eq. (59)(b) is a Hamilton–Jacobi equation with a non-conservative diffusion term. The system (60) can be writ-
ten in 1D with
otl ¼ jox½bk1ðlÞoxl� if x < RðtÞ;
otl ¼ jox½bk2ðlÞoxl� if x > RðtÞ;bkkðlÞ ¼ kkðl�1; P 0Þ=l

8>><>>: ð62Þ
with the conditions at the moving interface x = R(t)
d

dt
RðtÞ ¼ �KðlÞ � qðtÞ with KðlÞ :¼ j=l;

ljR�ðtÞ ¼ ljRþðtÞ;bk1ðlÞoxljR�ðtÞ ¼ bk2ðlÞoxljRþðtÞ :¼ qðtÞ:

8>>><>>>: ð63Þ
Thus, the system (60) is also a Stefan problem. This kind of Stefan problem is for example studied in [46] to
model phase change phenomena. In [16], we explicit auto-similar solutions of (62) and (63).

The advantage of Eq. (60)(b) is that it is a conservative equation oppositely to Eq. (59)(b), and that we
immediately obtain that SðlÞðtÞ :¼

R
X l log l dx is a decreasing function whose infimum is equal to Sðl1Þ

with l1ðxÞ ¼ Cst ¼
R

X lðt ¼ 0; xÞ dx=
R

X dx. Thus, using the equivalence Lemma 3.1, we find that the quantity
SðT ÞðtÞ :¼ �

R
X

log T
T dx is also a decreasing function for the system (59) whose infimum is equal to SðT1Þ with

T1(x) = Cst. Let us note that the quantity SðT ÞðtÞ is the thermodynamic entropy (up to a multiplicative posi-
tive constant) when the two fluids are perfect gases verifying b1 = b2 (see also Sections 4.2 and 4.3). In other
words, we recover the conclusion of Lemma 2.2 in a particular case.

The idea is now to take advantage of the equivalence between the systems (59) and (60) to obtain an entro-
pic scheme at the semi-discrete level. More precisely, since it is not difficult to obtain a semi-discrete entropic
scheme for the system (60) – which is not a priori the case for the system (59) –, we will define the discrete
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diffusion operator bDT ðY ; T Þ used in the scheme (38)(b) in such a way Lemma 3.1 is also verified at the semi-

discrete level. Let us underline that this approach was also applied with success in the field of kinetic equations
to obtain a H-theorem at the semi-discrete level and to obtain an entropic scheme at the fully discretized level
[6,12].

The equivalence of the systems (59) and (60) at the semi-discrete level is obtained in the following lemma:

Lemma 3.2. Let us suppose that the two fluids are perfect gases verifying b1 = b2 :¼ b where b is a strictly

positive constant and let us define the discrete diffusion operator DlðY ; lÞ with (51) and with
Fx
Dl
ðY ; lÞiþ1=2;j ¼

kiþ1=2;j

liþ1=2;j
�
liþ1;j � li;j

Dx
; ðaÞ

Fy
Dl
ðY ; lÞi;jþ1=2 ¼

ki;jþ1=2

li;jþ1=2

�
li;jþ1 � li;j

Dy
ðbÞ

8>>><>>>: ð64Þ
where li+1/2,j is a symmetric average of li,j and li+1,j, and where li,j+1/2 is a symmetric average of li,j and li,j+1.

With these definitions, the semi-discrete equation
otT i;j þTT ðU; T Þi;j ¼ jT i;j
bDT ðY ; T Þi;j ð65Þ
where TT ðU; T Þ and bDT ðY ; T Þ are given by (55)–(58) and where j :¼ b/P0 is equivalent to the semi-discrete

equation
otli;j ¼ jDlðY ; lÞi;j ð66Þ
with li,j = 1/Ti,j if and only if the corrective term f(T) in (58) is defined with
fðT Þi;jiþ1=2;j ¼
T iþ1;j � T i;j

2T i;j
þ 1

liþ1=2;jT iþ1;j
; ðaÞ

fðT Þi;ji;jþ1=2 ¼
T i;jþ1 � T i;j

2T i;j
þ 1

li;jþ1=2T i;jþ1

: ðbÞ

8>>><>>>: ð67Þ
The corrective term f(T) defines the entropic correction of the discrete operator bDT ðY ; T Þ.

In (64) and (67), the averages li+1/2,j and li,j+1/2 may be defined for example with the symmetric averages
(53) or (54) (by replacing k with l).

Lemma 3.2 allows to obtain the important corollary:

Corollary 3.1. The semi-discrete scheme (65) verifies
d
dt
SðT ÞðtÞ 6 0 ð68Þ
with SðT Þ ¼ �
P

i;j
log T i;j

T i;j
DxDy when the corrective term f(T) is defined with (67). Moreover, when f(T) = 1 –

which is equivalent to bDT ðY ; T Þ ¼ DT ðY ; T Þ –, the scheme (66) is a non-conservative scheme although (60)(b)
is a conservative equation.

The entropy SðT Þ ¼ �
P

i;j
log T i;j

T i;j
DxDy is the discrete thermodynamic entropy when the two fluids are perfect

gases verifying b1 = b2. The second point of this corollary underlines that it is impossible to prove that the
semi-discrete scheme is always entropic when we dot not use the entropic correction that is to say whenbDT ðY ; T Þ ¼ DT ðY ; T Þ. Numerical results in Section 4.4 confirm this corollary when the time is also discretized
by showing that for the proposed test cases, the numerical scheme does not converge whenbDT ðY ; T Þ ¼ DT ðY ; T Þ and converges when we use the entropic correction. Let us note that we deduce from
formula (67)(a) the two simple formulas
liþ1=2;j ¼
2liþ1;jli;j

liþ1;j þ li;j
() fðT Þi;jiþ1=2;j ¼

T 2
iþ1;j þ T 2

i;j

2T iþ1;jT i;j
; ðaÞ

liþ1=2;j ¼
liþ1;j þ li;j

2
() fðT Þi;jiþ1=2;j ¼

T 2
iþ1;j þ 3T 2

i;j

2T i;jðT iþ1;j þ T i;jÞ
: ðbÞ

8>>><>>>: ð69Þ
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We have of course similar formulas for fðT Þi;ji;jþ1=2 by using the formula (67)(b). We verify that for the test cases
proposed in Section 4, the formulas (69)(a) and (b) give similar results.

Proof of Lemma 3.2. Let us study the (i + 1/2,j) term in the scheme (65). We have
� 1

2
uiþ1=2;j �

T iþ1;j � T i;j

Dx
þ jT i;j

cFx
DT
ðY ; T Þi;jiþ1=2;j

Dx
¼ � 1

2
uiþ1=2;j �

T iþ1;j � T i;j

Dx
þ jT i;jfðT Þi;jiþ1=2;j

�
Fx

DT
ðY ; T Þiþ1=2;j

Dx
:

Moreover, since bn
i;j ¼ b by hypothesis, the formula (42) shows thatP
P0ðY n; T n; P nÞ ¼ b � i;jDT ðY n; T nÞi;jDxDyP
i;j

Dx Dy
Cn

i;j

¼ 0
since DT ðY ; T Þ is a conservative operator and because of the boundary condition (8)(b) on oX. Thus, Eq. (39)
takes the form
DDx;DyðUnÞ ¼ jDT ðY n; T nÞ

which implies that

Uiþ1;j�Ui;j

Dx ¼ jkiþ1=2;j
T iþ1;j�T i;j

Dx . Using (44), we deduce that
uiþ1=2;j ¼ jkiþ1=2;j
T iþ1;j � T i;j

Dx
:

Thus
i;j
� 1

2
uiþ1=2;j �

T iþ1;j � T i;j

Dx
þ jT i;j

cFx
DT
ðY ; T Þiþ1=2;j

Dx

¼ j
kiþ1=2;j

Dx2
ðT iþ1;j � T i;jÞ �

1

2
ðT iþ1;j � T i;jÞ þ T i;jfðT Þi;jiþ1=2;j

� �
¼ j

kiþ1=2;j

Dx2
� T iþ1;j � T i;j

liþ1=2;j
� T i;j

T iþ1;j
¼ �j

kiþ1=2;j

Dx2
�
liþ1;j � li;j

liþ1=2;j
� 1

l2
i;j
¼ � j

l2
i;j
�
Fx

Dl
ðY ; T Þiþ1=2;j

Dx
by using (64)(a) and (67)(a). By doing same calculus on the other terms, we finally obtain that
– TT ðU; T Þi;j þ jT i;j

bDT ðY ; T Þi;j ¼ � j
l2

i;j
DlðY ; lÞi;j that is to say
otT i;j ¼ �
j
l2

i;j
DlðY ; lÞi;j:
We conclude by noting that otT i;j ¼ �l�2
i;j otli;j. h

Proof of Corollary 3.1. For sake of simplicity, we write the proof in the 1D case, the proof in the 2D (and 3D)
case being the same. We have
SðT ÞðtÞ :¼ �
X

i

log T i

T i
Dx ¼

X
i

li log liDx:
Thus, the time-derivative of SðT ÞðtÞ is equal to
d
dt
SðT ÞðtÞ ¼

X
i

otliDxþ
X

i

log liotliDx:
And since the semi-discrete scheme (65) is equivalent to the semi-discrete scheme (66) (cf. Lemma 3.2), we ob-
tain that

P
iotliDx ¼ j

P
iDlðY ; lÞiDx ¼ 0 (since DlðY ; lÞ is a conservative operator) and

P
i log liotliDx ¼

j
P

i log liDlðY ; lÞiDx. This implies that
d
dt
SðT ÞðtÞ ¼ j

X
i

log liDlðY ; lÞiDx ¼ j
X

i

log li½Fx
Dl
ðY ; lÞiþ1=2 �Fx

Dl
ðY ; lÞi�1=2�

¼ j
X

i

ðlog li � log liþ1ÞFx
Dl
ðY ; lÞiþ1=2 ¼ �j

X
i

ðlog liþ1 � log liÞðliþ1 � liÞ
kiþ1=2

liþ1=2Dx
:
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We obtain that d
dt SðT ÞðtÞ 6 0 by noting that j > 0 and that (logli+1 � logli)(li+1 � li) P 0 since x ´ logx is

an increasing function. Let us underline that this result is obtained for any li+1/2 > 0 and, thus, for any cor-
rective term fðT Þiiþ1=2 verifying the formula (67)(a). To prove the second point, we just have to note that

fðT Þiiþ1=2 ¼ 1 is equivalent to liþ1=2 ¼
2l2

iþ1

3liþ1�li
which is a non-symmetric formula. h

3.4. Interface capturing algorithm: the operator TY ðU; Y Þ

We now define the discrete operator TY ðU; Y Þ used in (38)(a) to discretize the 2D transport equation
(36)(a). Firstly, we recall the splitting technique which allows to uncouple the directions x and y. Secondly,
we recall the 1D non-diffusive scheme proposed by Després and Lagoutière in [18,19,31] and we describe
the extension in our context of this 1D scheme. This extension will be used to define the operator
TY ðU; Y Þ. Because of the properties of the Després–Lagoutière’s non-diffusive scheme, we obtain a first order
operator TY ðU; Y Þ which defines a 2D scheme (38)(a) diffusing any initial Heaviside function Y0 on a small
number of cells (between one and three) during the transient regime.

3.4.1. Splitting of the 2D transport equation (36)(a)

To solve the transport equation (36)(a) in 2D, we split the directions x and y. This means that we succes-
sively solve the two transport equations
otY þ vðt; x; yÞoxY ¼ 0 with vðt; x; yÞ :¼ oxU
and
otY þ vðt; x; yÞoyY ¼ 0 with vðt; x; yÞ :¼ oyU
at each time step. Thus, we discretize (36)(a) with the scheme
Y �i;j ¼ Y n
i;j � Dt �Tx

Y ðUn; Y nÞi;j; ðaÞ
Y nþ1

i;j ¼ Y �i;j � Dt �Ty
Y ðUn; Y �Þi;j ðbÞ

(
ð70Þ
where Tx
Y ðU; Y Þ and Ty

Y ðU; Y Þ discretize, respectively, the continuous operators oxUoxY and oyUoyY. In other
words, the operator TY ðU; Y Þ is defined with the formula
TY ðU; Y Þ ¼Tx
Y ðUn; Y nÞi;j þTy

Y ðUn; Y �Þi;j where Y �i;j ¼ Y n
i;j � Dt �Tx

Y ðUn; Y nÞi;j: ð71Þ
Let us underline that we can use this splitting technique because the 2D mesh is cartesian. The importance of
this splitting approach will be underlined in Section 3.4.4.

It remains to define the discrete operators Tx
Y ðU; Y Þ and Ty

Y ðU; Y Þ used in (71). Since the previous splitting
approach is equivalent to solve successively two 1D transport equations, we just have to define the operator
Tx

Y ðU; Y Þ in the 1D case
otY þ vðt; xÞoxY ¼ 0 where vðt; xÞ :¼ oxU is a given function: ð72Þ
The extension for Tx
Y ðU; Y Þ and Ty

Y ðU; Y Þ in the 2D case will be immediate. To define the operator Tx
Y ðU; Y Þ

in the 1D case, we extend to the case v(t,x) 6¼ Cst the non-diffusive scheme proposed in [18,19,31] for the
resolution of the 1D transport equation otY + voxY = 0 where v = Cst. We recall in Section 3.4.2
this non-diffusive scheme and its basic properties (see Lemma 3.3) and we explicit this extension in
Section 3.4.3.

3.4.2. Discretization of otY + voxY = 0 with v :¼ Cst with a non-diffusive scheme

The Després–Lagoutière’s non-diffusive scheme was proposed and studied in [18]. This scheme enters in the
class of schemes using the slope-limiters formalism [43] and is equivalent to the ultrabee scheme [44]. This
scheme has been rewritten with an equivalent formulation in [19] (see also [31]) which does not use explicitly
the slope-limiters formalism. This formulation is given by
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Y nþ1
i ¼ Y n

i �
Dt
Dx

v � ½Yn
iþ1=2ðvÞ �Yn

i�1=2ðvÞ� ð73Þ
where 8

Yiþ1=2ðvÞ ¼

biðvÞ if Y iþ1 6 biðvÞ;
Y iþ1 if biðvÞ < Y iþ1 < BiðvÞ;
BiðvÞ if BiðvÞ 6 Y iþ1

><>: ð74Þ
with
biðvÞ :¼ Y i �maxðY i�1; Y iÞ
vDt=Dx

þmaxðY i�1; Y iÞ;

BiðvÞ :¼ Y i �minðY i�1; Y iÞ
vDt=Dx

þminðY i�1; Y iÞ:

8>><>>: ð75Þ
Of course, when v = Cst < 0, we have to change (74) and (75) with symmetric formulas. This scheme is inter-
esting because of the following lemma [18,19,31]:

Lemma 3.3. Under the CFL criteria Dt < Dx/v, the scheme (73)–(75) is convergent, is such that

0 6 Y n
i 6 1) 0 6 Y nþ1

i 6 1 and diffuses any Heaviside function on only one cell which means that the numerical

diffusion is controlled uniformly in time.

The main advantage of the scheme (73)–(75) is that any 1D interface captured by this scheme remains sharp
for any integration time. Let us note that it is easy to prove that when the initial condition is a Heaviside func-
tion, the 1D scheme (73)–(75) is equivalent to the reservoir scheme proposed in [3]. The advantage of the for-
mulation (73)–(75) is that it enters into the field of finite-volume schemes (which allows to obtain convergence
results with classical techniques) and that the 2D (or 3D) extension is immediate through the splitting tech-
nique described in Section 3.4.1. To our knowledge, the extension in 2D and 3D of the reservoir scheme for-
malism is not so natural.

3.4.3. The operator Tx
Y ðU; Y Þ in the 1D case

We now discretize the 1D transport equation (72) with v(t,x) 6¼ Cst by extending the scheme (73)–(75) to
our context. Let us underline that the possibility of this extension is mentioned in [31]. The idea is to suppose
that, locally to the cell i, the velocity v(t,x)2]xi�1/2,xi+1/2 [is a constant vi. Thus, we define the scheme
Y nþ1
i ¼ Y n

i � Dt �Tx
Y ðUn; Y nÞi ð76Þ
and the operator Tx
Y ðU; Y Þ with
Tx
Y ðU; Y Þi ¼

1

Dx
� Uiþ1 � Ui�1

2Dx
� ½Y left

iþ1=2ðUÞ � Y right
i�1=2ðUÞ� ð77Þ
with
Y left
iþ1=2ðUÞ ¼ Yiþ1=2

Uiþ1 � Ui�1

2Dx

� �
;

Y right
iþ1=2ðUÞ ¼ Yiþ1=2

Uiþ2 � Ui

2Dx

� �
8>>><>>>: ð78Þ
where Yiþ1=2ðvÞ is given by (74) when v > 0 (and by the symmetric formulas when v < 0). Let us note that
Uiþ1�Ui�1

2Dx is an approximation of the potential velocity field in the cell i and that
uiþ1=2 þ ui�1=2

2
¼ Uiþ1 � Ui�1

2Dx
where the discrete potential velocity field ui+1/2 is given by (44)(a). Of course, the scheme (76)–(78) is consistent
with Eq. (72).

The important point of this subsection is the following result:
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Lemma 3.4. Under the CFL criteria Dt < Dx=maxijun
iþ1=2j, the scheme (76)–(78) is such that

0 6 Y n
i 6 1) 0 6 Y nþ1

i 6 1 and diffuses any Heaviside function on only one cell which means that the numerical

diffusion is controlled uniformly in time.

The proof of this lemma relies on the fact that, locally to any cell i, the scheme (76)–(78) is identical to the
scheme (73)–(75) which implies that the conclusions of Lemma 3.3 are still valid.

3.4.4. Remark on the importance of the splitting technique

The use of the Després–Lagoutière’s non-diffusive scheme makes necessary to split the directions x and y to
define the operator TY ðU; Y Þ in the 2D case. Indeed, the 2D scheme
Y nþ1
i;j ¼ Y n

i;j �
Dt
Dx

vx � ½Yn
iþ1=2;jðvxÞ �Yn

i�1=2;jðvxÞ� �
Dt
Dy

vy � ½Yn
i;jþ1=2ðvyÞ �Yn

i;j�1=2ðvyÞ�
used to discretize the 2D equation otY + v Æ $Y = 0 (with v = (vx > 0,vy > 0) = Cste) is not stable when
Yiþ1=2;jðvxÞ and Yi;jþ1=2ðvyÞ are defined with (74) [31]. Moreover, by applying Lemma 3.4 in each direction,
we obtain that the 2D operator TY ðU; Y Þ obtained by using the splitting technique verifies
0 6 Y n

i;j 6 1) 0 6 Y nþ1
i;j 6 1 under the CFL criteria Dt < minðDx=maxi;jjun

iþ1=2;jj;Dy=maxi;jjun
i;jþ1=2jÞ. And we

numerically verify that for the test cases proposed in Section 4, the 2D Heaviside function is diffused during
the transient regime on a limited number of cells (between one and three): this means that the accuracy objec-
tive of the two-steps approach (cf. Section 1) is realized.
4. Numerical results in the case of two perfect gases

We now propose 2D numerical results on the domain X equal to the open square ]�1,1[·]�1,1[. Let us
recall that the mesh is cartesian. In the proposed numerical tests, we have Dx = Dy. Nevertheless, we could
also apply our algorithm with Dx 6¼ Dy.

We firstly show in Section 4.1 that the 2D interface capturing algorithm proposed in Section 3.4 is accurate
by applying this algorithm to the numerical resolution of the 2D non-linear hyperbolic-elliptic system intro-
duced in [15]. This system models strong vibrations of a surface R(t) and the volume VðtÞ bounded by R(t) is
also solution of an ordinary differential equation which can be solved explicitly: thus, we can test the robust-
ness and the accuracy of our 2D interface capturing algorithm. Secondly, we propose 2D numerical results for
the potential DLMN-M system when the two fluids are perfect gases, the equations of state and the physical
constants being defined in Section 4.2. This case is important for two reasons: firstly, it allows to explicit for
any initial conditions the thermodynamic equilibrium defined by ðT1; P1; S11 Þ and, thus, allows to study the
accuracy of the algorithm, the quantity S11 being the surface of the bubbles of fluid 1 when (T,P) = (T1,P1):
see Section 4.3; secondly, it is necessary to validate the way we used to define the entropic correction in Section
3.3 before simulating the DLMN system with more complicated equations of state.

The first test case proposed in Section 4.4 validates the convergence of the scheme toward a good thermo-
dynamic equilibrium and confirms the importance of the entropic correction, at least when the initial temper-
ature differences are large. To define this correction, we use the formula (69)(a) (the formula (69)(b) gives
similar results for the proposed test cases). The second test case proposed in Section 4.5 shows that the 2D
interface capturing algorithm defined in Section 3.4 allows to capture fine details of the compression and dila-
tion of bubbles, even when the topological changes are important. We show in Section 4.6 that the thickness of
the artificial mixture area is almost constant and lower than three cells during the transient regime. That prop-
erty is an important characteristic of our algorithm and is of course directly linked to the properties of the 2D
interface capturing algorithm based on the Després–Lagoutière’s non-diffusive scheme [18,19,31] (see Lemmas
3.3 and 3.4). At last, we numerically show in Section 4.7 that the scheme converges with a first order error and
we study the value of the time step Dt during the transient regime.

The time step Dt is such that
Dt ¼ CFL�minðDtu;DtT Þ ð79Þ

with CFL = 1/5 where
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Dtu ¼
Dx

max
i;j
ðjuiþ1=2;jj; jui;jþ1=2jÞ

; ðaÞ

DtT ¼
P n

max
i;j
ðbn

i;jk
n
i;j=a

n
i;jÞ

minðDx2;Dy2Þ: ðbÞ

8>>>><>>>>: ð80Þ
We numerically verify that the constraint (79) is sufficient to obtain the stability of our algorithm. Let us note
that we could relax the constraint (79) by taking CFL > 1/5 (indeed, CFL 2 [0,2/5] seems to define a stability
limit area for our explicit algorithm). The constraint Dt 6 Dtu is imposed by the explicit 2D interface capturing
algorithm (38)(a); the constraint Dt 6 DtT is imposed by the diffusive part of the explicit scheme (38)(b).

The thermodynamic pressure Pn+1 is computed with the operator P defined with the implicit scheme
(45)(c). This operator makes conservative the scheme in total mass (let us recall that with this choice, the
scheme cannot conserve the mass of the fluid 1 and the energy of the system). The operator P given by
(45)(c) is implicit. Nevertheless, when the two fluids are perfect gases, the operator P is explicit. Indeed, we
easily obtain that (45)(c) coupled to the closure law (28)(a) and to the equation of state (84)(a) gives
P nþ1 ¼ PðY n; Y nþ1; T n; T nþ1; P nÞ :¼ P n �

P
i;j

DxDy
Rn

i;jT
n
i;jP

i;j

DxDy

Rnþ1
i;j T nþ1

i;j
with Rn
i;j :¼ Y n

i;jR1 þ ð1� Y n
i;jÞR2. Let us note that for the two test cases proposed in this section, the numerical

results are equivalent when the operator P is defined with (45)(a) or (b), or with (48) or (49). At last, the initial
pressure P0 = P(t = 0) is equal to 103. This high pressure implies that the initial Mach number is lower than
3 · 10�2 in the two test cases. Since the Mach number decreases exponentially to zero, the low Mach number
condition – which defined the physical validity domain of the DLMN system – is always satisfied. This expo-
nential decreasing also underlines that it would be necessary to use good preconditioning techniques and ro-
bust iterative solvers to reproduce these two test cases with implicit diphasic compressible Navier–Stokes
solvers.
4.1. Preliminary results: discretization of an abstract bubbles vibration model

In [15], we have established an existence and uniqueness result for a classical solution of the non-linear
hyperbolic-elliptic system
otY þrU � rY ¼ 0; ðaÞ
Y ðt ¼ 0; xÞ ¼ Y 0ðxÞ; ðbÞ
DU ¼ wðtÞ �PðY Þ; ðcÞ
rU � njoX ¼ 0 ðdÞ

8>>><>>>: ð81Þ
defined on [0,+1[ · X, the function PðY Þ being given by PðY Þ ¼ Y �
R

X
Y dxR

X
dx

. The function wðtÞ 2 Cð½0;þ1½Þ

is a given function which imposes the frequency of the vibrations of R(t) when the initial condition is given by
(7). Let us remark that the system (81) and the potential DLMN-M system have a similar mathematical struc-
ture. An important property of the system (81) is given in the following lemma [15]:

Lemma 4.1. When the initial condition Y(t = 0,x) is given by (7), the volume VðX1ðtÞÞ :¼
R

X1ðtÞ dx of the bubble

X1(t) is solution of the ordinary differential equation
f 0ðtÞ ¼ wðtÞ � f ðtÞ½1� f ðtÞ�;

f ðt ¼ 0Þ ¼VðX1ðt ¼ 0ÞÞ
VðXÞ

8>><>>:
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with f ðtÞ :¼ VðX1ðtÞÞ
VðXÞ and VðXÞ :¼

R
X dx. Thus, the volume of the bubble X1(t) is given by
VðX1ðtÞÞ ¼VðXÞ �
VðX1ðt ¼ 0ÞÞ expð

R t
0
wðsÞ dsÞ

VðX2ðt ¼ 0ÞÞ þVðX1ðt ¼ 0ÞÞ expð
R t

0
wðsÞ dsÞ

; ð82Þ
where VðX2ðt ¼ 0ÞÞ :¼VðXÞ �VðX1ðt ¼ 0ÞÞ.

This lemma allows to study carefully the accuracy of the 2D interface capturing algorithm proposed in Section
3.4 by comparing the quantity
VDx;DyðX1ðtnÞÞ ¼
X

i;j

Y n
i;jDxDy ð83Þ
to the quantity VðX1ðtnÞÞ deduced from the formula (82). Thus, we solve the system (81) in 2D geometry by
using the numerical schemes (38)(a) and (39) with now
Gn ¼ wðtnÞ � Y n
i;j �

P
k;lY

n
k;lDxDy

ðymax � yminÞðxmax � xminÞ

� �
:

To impose strong non-periodic vibrations to the bubble X1(t) and, thus, to the interface R(t), we define w(t)
with
wðtÞ ¼ 3� cos
2pt
T

� �
� cos

2ptffiffiffi
2
p

T

� �
� cos

2ptffiffiffi
7
p

T

� �
with T ¼ 1:
To study the accuracy of the algorithm locally to the interface R(t), we define the initial conditions (7) in such a
way the bubble X1(t = 0) has the shape of a star and, thus, has a fine structure. Indeed, the system (81) is not a
dissipative system and the structure of the interface R(t > 0) should be similar to the structure of R(t = 0) de-
spite the strong vibrations (let us note that the DLMN system is dissipative because of the heat conduction).
The time step is defined with Dt = min(CFL · Dtu,Dtw) with CFL = 1/2 where Dtu is given by (80)(a) and
where Dtw ¼ T

100
. The time step Dtw is linked to the signal w(t) whose high frequency is equal to 2p=T. We

use a 100 · 100 mesh. Figs. 1–3 show Y(t,x), respectively, when tn = 0 (initial condition), tn = 4 and tn = 10
(which corresponds to n . 1000 since Dtu > 0.019 and Dtw = 0.01). Fig. 4 shows the volume VðX1ðtÞÞ of
the bubble (t 2 [0,10]) when it is computed with the analytic formula (82) and with the numerical formula
(83) (dashed line). These figures show that the 2D interface capturing algorithm based on the Després–Lag-
outière’s non-diffusive scheme [18,19,31] is accurate and preserves the fine structure of the interface R(t), even
under strong vibrations.
Fig. 1. Initial mass fraction Y 0
i;j (abstract model).



Fig. 2. Mass fraction Y n
i;j when tn = 4 (abstract model).

Fig. 3. Mass fraction Y n
i;j when tn = 10 (abstract model).
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4.2. Equations of state and physical constants

We now come back to the DLMN system. In this section, we suppose that the two fluids are perfect gases.
This means that the equations of state are given by
qkðT ; P Þ ¼
P

RkT
; ðaÞ

ekðT ; P Þ ¼ ekðT Þ ¼
RkT

ck � 1
; ðbÞ

8>><>>: ð84Þ
where Rk > 0, ck > 1 and k 2 {1, 2}. In that case, we deduce from (12) and (13) that
akðT ; P Þ ¼ aðT Þ ¼ 1

T
;

bkðT ; P Þ ¼ bk ¼
ck � 1

ck
;

CkðT ; P Þ ¼ Ck ¼ ck:

8>>>><>>>>:
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Fig. 4. Volume of the bubble given by (82) and (83) (dashed line) (abstract model).
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Moreover, by using (26)–(28), we obtain
qðY ; T ; P Þ ¼ P
RðY ÞT
and
aðY ; T ; P Þ ¼ aðT Þ ¼ 1

T
;

bðY ; T ; P Þ ¼ bðY Þ ¼ RðY Þ
CpðY Þ

;

CðY ; T ; P Þ ¼ CðY Þ ¼ 1

1� bðY Þ ;

8>>>>>>><>>>>>>>:

where RðY Þ ¼ YR1 þ ð1� Y ÞR2 and CpðY Þ ¼ Y R1c1

c1�1
þ ð1� Y ÞR2c2

c2�1
. Let us remark that when b1 = b2 that is to

say when c1 = c2 :¼ c, the previous relations show that b(Y,T,P) = (c � 1)/c and C(Y,T,P) = c: this particular
case is used in Lemmas 3.1 and 3.2 to define the entropic correction. At last, the conductivity kk(T,P) is sup-
posed to be a constant kk for sake of simplicity (but k1 6¼ k2), and the physical constants are given by
c1 ¼ 3;

R1 ¼ 1;

k1 ¼ 1

8><>: and

c2 ¼ 3=2;

R2 ¼ 2;

k2 ¼ 1=2:

8><>:

4.3. Thermodynamic equilibrium of the DLMN system

Lemma 2.1 coupled to the equations of state (84) shows that
MkðtÞ :¼ P ðtÞ
Rk
�
Z

XkðtÞ

dx
T ðt; xÞ for k 2 f1; 2g;

EðtÞ :¼ P ðtÞ � S1ðtÞ
c1 � 1

þ S2ðtÞ
c2 � 1

� �
8>>><>>>: ð85Þ
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are constants at the continuous level and, thus, are respectively equal to the initial quantities Mkðt ¼ 0Þ and
Eðt ¼ 0Þ knowing that the quantities
S1ðtÞ ¼
R

X Y ðt; xÞ dx;

S2ðtÞ ¼
R

Xð1� Y ðt; xÞÞ dx

(
ð86Þ
define the surfaces of X1(t) and X2(t) (or the volumes in 3D). Of course, we have also S1(t) + S2(t) = SX where
SX is the surface of the domain X. By using these relations, we easily obtain that
T1 ¼ Eðt ¼ 0Þ � ðc1 � 1Þðc2 � 1Þ
ðc2 � 1ÞR1M1ðt ¼ 0Þ þ ðc1 � 1ÞR2M2ðt ¼ 0Þ ;

P1 ¼ Eðt¼0Þ
SX
� R1M1ðt ¼ 0Þ þ R2M2ðt ¼ 0Þ
R1M1ðt ¼ 0Þ

c1 � 1
þ R1M2ðt ¼ 0Þ

c2 � 1

;

S11 ¼ SX �
R1M1ðt ¼ 0Þ

R1M1ðt ¼ 0Þ þ R2M2ðt ¼ 0Þ :

8>>>>>>>>><>>>>>>>>>:
ð87Þ
And since the thermodynamic entropy sk(T,P) is equal to P
bkT logðP bk=T Þ when the fluid k is a perfect gas, we

deduce the infimum S1 	SðY1; T1; P1Þ of the entropy S 	SðY ; T ; P Þ – cf. Lemma 2.2 – with the formula
S1 ¼ P1

T1
� S11

b1

log
P1b1

T1

� �
þ S12

b2

log
P1b2

T1

� �� �
: ð88Þ
The quantity ðT1; P1; S11 ;S1Þ defines the continuous thermodynamic equilibrium of the DLMN system. Of
course, we define the discrete thermodynamic equilibrium ðT1; P1; S11 ;S1Þ with (87) and (88) by replacing

R
X

with
P

i;j in (85) and (86).

4.4. First test case: dilation of one bubble on a 50 · 50 mesh

The initial temperature field is given by
T 0
i;j ¼ 10� 1� exp �25

x2
i;j þ y2

i;j

2

 !" #
þ 10�4:
The quantity 10�4 is added to impose T 0
i;j > 0 in X. We define the initial circular bubble X0

1 with
Fig. 5. Initial mass fraction Y 0
i;j (first test case).
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Y 0
i;j ¼

1 if x2
i;j þ y2

i;j < ð1=4Þ2;
0 if not:

(

Figs. 5 and 6 show the mass fractions Y 0

i;j and Y n
i;j when tn = 300 (which corresponds to n . 4200). Fig. 7 shows

the pressure P(tn)/P1, the entropy SðtnÞ= jS1 j and the surface S1ðtnÞ=S11 of the bubble X1(tn) where the three
constants P1, S1 and S11 are given by the discrete thermodynamic equilibrium (87) and (88). Fig. 8 repre-
sents P(tn)/P1 and SðtnÞ=jS1j when we do not use the entropic correction introduced in Section 3.3 i.e. whenbDT ðY ; T Þ :¼ DT ðY ; T Þ in (38)(b). Fig. 9 shows the mass fraction Y n

i;j at tn = 300 when the operator TY ðU; Y Þ is
defined with the standard first order upwind scheme. Fig. 10 compares the relative mass error
Fig. 6. Mass fraction Y n
i;j when tn = 300 (first test case).

Fig. 7. P(t)/P1, SðtÞ=jS1j and S1ðtÞ=S11 (first test case).
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Fig. 8. P(t)/P1 and SðtÞ=jS1j without entropic correction (first test case).
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�M1
ðtnÞ ¼

P
i;j
ðY n

i;jq
n
i;j�Y 0

i;jq
0
i;jÞP

i;j
Y 0

i;jq
0
i;j

of the bubble X1(tn) and the relative energy error �EðtnÞ ¼
P

i;j
ðqn

i;je
n
i;j�q0

i;je
0
i;jÞP

i;j
q0

i;je
0
i;j

of the system

when the operator TY ðU; Y Þ is defined with the non-diffusive scheme proposed in Section 3.4 or with the stan-
dard first order upwind scheme.

These numerical results show that the proposed 2D algorithm is accurate, stable and converges toward a
good thermodynamic equilibrium when tn! +1. They also underline that the entropic correction is necessary
to obtain the stability and the convergence of the algorithm when tn! +1 (compare Figs. 7 and 8). More-
over, they show that the relative mass and energy errors oscillate around a tiny constant during the transient
regime: this property is directly connected to the non-diffusive property of the 2D interface capturing algo-
rithm proposed in Section 3.4. For example, we see on Fig. 10 that these errors are not controlled during
the transient regime when TY ðU; Y Þ is defined with a standard upwind scheme. We can also deduce from
Fig. 6 that the thickness of the artificial mixture area is of the order of three cells: cf. also Section 4.6 for a
more accurate estimation of this thickness.

4.5. Second test case: dilation of six bubbles on a 100 · 100 mesh

The topological changes obtained with the first test case are not important in the sense that the bubble
remains circular and centered in X (compare Figs. 5 and 6). Of course, this is due to the symmetry of the flow
and to the fact that the surface of the bubble is not disturbed by another bubble or by the boundary oX. To
study more important topological changes, we now define the initial temperature field with
T 0
i;j ¼ 10� 1� 0:5 exp � 125

4
ððxi;j � 0:5Þ2 þ y2

i;jÞ
� �

� 0:75 exp � 125

4
ððxi;j þ 0:5Þ2 þ y2

i;jÞ
� ��

� 0:5 exp � 125

4
ðx2

i;j þ ðyi;j � 0:48Þ2Þ
� �

� 0:8 exp � 125

4
ððxi;j � 0:3Þ2 þ ðyi;j þ 0:42Þ2Þ

� �
� exp � 125

4
ðx2

i;j þ y2
i;jÞ

� �
� exp � 125

4
ððxi;j þ 0:48Þ2 þ ðyi;j � 0:53Þ2Þ

� ��
þ 2� 10�2 ð89Þ
and the initial mass fraction with



Fig. 9: Mass fraction Y n
i;j when tn = 300.

Fig. 10: Mass error of the bubble and energy error.

Fig. 9 and 10. TY ðU; Y Þ is defined with a first order upwind scheme (first test case).
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Y 0
i;j ¼

1 if T 0
i;j < 7:5;

0 if not:

(
ð90Þ
As for the first test case, the quantity 2 · 10�2 is added to impose T 0
i;j > 0 in X. Let us underline that this test

case is hard: indeed, the initial temperature is close to zero at the center of two of the six bubbles and the initial
temperature differences are large. This is also the case for the previous test case. Figs. 11 and 12 show the mass
fractions Y 0

i;j and Y n
i;j when tn = 100 (which corresponds to n . 6300). Figs. 13 and 14 show the temperature

and the density at y = 0 when tn = 12.5 and tn = 100. Fig. 15 shows the pressure P(tn)/P1, the entropy
SðtnÞ=jS1j and the surface S1ðtnÞ=S11 . Fig. 16 shows the relative mass and energy errors.



Fig. 11. initial mass fraction Y 0
i;j (second test case).

Fig. 12. mass fraction Y n
i;j when tn = 100 (second test case).
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Fig. 13. T n
i;j for yi,j = 0, tn = 12.5 (dashed line) and tn = 100 (second test case).
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Fig. 14. qn
i;j for yi,j = 0, tn = 12.5 (dashed line) and tn = 100 (second test case).

Fig. 15. P(t)/P1, SðtÞ= jS1 j and S1ðtÞ=S11 (second test case).

Fig. 16. Mass of the six bubbles and energy errors.
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The initial data (89) and (90) allow to define six bubbles which are initially circular and close to each other
(cf. Fig. 11). Since the initial temperature in each bubble is lower than the temperature outside the bubble, the
volume of each bubble increases (i.e. dilation). This induces quasi contacts between the bubbles (and between
one of the six bubbles and the boundary oX): a consequence is that we obtain important deformations of the
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initial circular topology. For example, two of the six bubbles are pinched by two bigger bubbles during the
dilation making the surface of these two bubbles close to a ‘‘singular’’ surface: see Fig. 12. Fig. 13 shows that
the discontinuity of the temperature gradient $T (induced by the fact that k1 6¼ k2) is taken into account by the
algorithm and that the temperature converges toward a constant. Fig. 14 shows that the discontinuity of the
density field is well taken into account by the mixture model (26)–(28) of the DLMN-M system. The Fig. 15
confirms that the algorithm is stable and converges toward a good thermodynamic equilibrium when
tn! +1. As for the first test case (cf. Fig. 8), we verify that there is no convergence when the entropic cor-

rection is not applied. Fig. 16 shows that the relative mass and energy errors oscillates, as for the first test case
(cf. Fig. 10), around a tiny constant during the transient regime.

4.6. Convergence and estimation of the thickness of the artificial mixture area

We now study numerically the convergence of the 2D algorithm and the non-diffusive property of the 2D
interface capturing algorithm.

� Convergence: Fig. 17 represents in logscales for three different meshes the absolute values of the mass and
energy errors in function of Dx (Dy = Dx) at the time tn = 50 in the case of the second test case. The three
meshes are the following: 50 · 50 (Dx = Dx1), 100 · 100 (Dx = Dx1/2) and 200 · 200 (Dx = Dx1/4). This fig-
ure shows that the algorithm is convergent and is a first order algorithm. Despite this first order, we now
show that the interface capturing algorithm is precise through its non-diffusive property. Let us underline
that we have already shown in Section 4.1 that the interface capturing algorithm is precise and can preserve
the fine structure of the interface R(t) in the case of the system (81) (see Figs. 1–4).
� Non-diffusive property: Let us define the quantity
mn :¼ 1

2
ffiffiffi
p
p

minðDx;DyÞ �
SX �

P
i;jðd1;Y n

i;j
þ d0;Y n

i;j
ÞDxDyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jY
n
i;jDxDy

q ð91Þ

(da,b is the Kronecker symbol). The quantity mn · min(Dx,Dy) is an estimation of the thickness of the arti-
ficial mixture area. The estimation (91) supposes that X1(tn) is always close to a circle for sake of simplicity,
which is only true for the first test case (cf. Fig. 6). Fig. 18 represents mn for the first test case when
 0.001

 0.01

 0.1

1

Fig. 17. Convergence of the scheme when Dx! 0 (second test case).
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Fig. 18. Estimation of the thickness mn of the artificial mixture area (first test case) (second test case).
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tn 2 [0, 20]. It confirms that the order of the thickness of the mixture area is almost constant and lower than
three cells during the transient regime. This figure shows also that this central property of our algorithm is
not achieved when TY ðU; Y Þ is defined with a standard first order upwind scheme. The increasing of mn is
due to the numerical diffusion and the decreasing of mn is due to a bad interaction of the artificial mixture
area with the boundary oX during the transient regime, interaction which artificially compresses the circular
geometry of the bubble (see also Fig. 9).
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Fig. 19. Dtu(tn), DtT(tn) (dashed line) and Dtac(t
n) (dotted lines) (second test case).
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4.7. Study of the time step Dt

Let us recall that the time step Dt is defined with (79) and (80). The time steps Dtu and DtT define, respec-
tively, a time scale associated to the velocity field and a time scale associated to the heat conduction.

We represent in Fig. 19 for the second test case the quantities log10Dtu(tn), log10DtT(tn) (dashed line) and
log10Dtac(t

n) (dotted line) where Dtac ¼ Dx
maxi;jcn

i;j
is a time scale associated to the acoustic waves celerity. Fig. 19

shows that the time step Dt of our algorithm is always equal to DtT and that DtT/Dtu converges exponentially
to zero when tn! +1. This is a consequence of the potential approximation of the DLMN system which does
note take into account the dynamic part of the DLMN system by only focusing on the diphasic thermody-
namic character of the DLMN system. By taking into account the momentum equation with a high gravity
field for example, the time step Dtu could be much lower. This figure shows also that Dtac/Dtu is always close
to zero and that Dtac/Dt . 10�1 since Dt = DT. Thus, to diminish the CPU time i.e. to replace the constraint
(79) by the constraint Dt = CFL · Dtu, future works should study the implicitation of the temperature equa-
tion (38)(b). The linear implicit schemes
T nþ1
i;j ¼ T n

i;j þ Dt � �TT ðUn; T nþh1Þi;j þ bn
i;j

P0ðY n; T n; P nÞ
P n T nþh2

i;j þ
bDT ðY n; T nþh3Þi;j

an
i;jP

n

 !" #

with hk 2 {0,1} – the entropic correction (69)(a) (or (b)) in bDT being explicit – should be studied.

5. Conclusion

We have proposed a bidimensional (2D) algorithm for the simulation of the potential diphasic low Mach
number (DLMN) system. Following the approach proposed in [20,31] for the numerical discretization of the
diphasic compressible Euler system, we have built our algorithm by following a two-steps approach: in the
first step, we have extended the DLMN system to the case of a mixture by defining the DLMN-M system
through ad hoc closure laws modelling a mixture; in the second step, we have proposed an interface captur-
ing algorithm based on the transport of an Heaviside function using the Després–Lagoutière’s non-diffusive
scheme [18,19,31]. The potential approximation of the DLMN system – which was deduced from an oper-
ators splitting – has been introduced to focus on the numerical difficulties coming from the diphasic thermo-
dynamic character rather than from the diphasic thermodynamic + dynamic character of the DLMN system.
This study has shown that when the initial temperature differences are large, it appears numerical instabilities
which prevent the scheme to converge to a good thermodynamic equilibrium when the time goes to infinity.
We have shown that these instabilities are due to the non-entropic character of the scheme. Thus, we have
proposed an entropic correction to make entropic our algorithm. This entropic correction was inspired from
numerical algorithms proposed in the field of kinetic equations [6,12]. It is important to note that, without
this entropic correction, these numerical instabilities would also be present in the case of the no-potential
DLMN system.

The 2D numerical results show that our 2D algorithm is stable and accurate. It is stable in the sense that it
converges without any instabilities toward a discrete equilibrium when the time goes to infinity despite the
fact that the equations of state and the thermal conductivities are not continuous functions and despite the
large initial temperature differences. It is accurate in the sense that the thickness of the artificial mixture area
is almost constant and lower than three cells during the transient regime and in the sense that the discrete
equilibrium is closed to the theoretical discrete thermodynamic equilibrium. Let us underline that we do not
use any numerical tuning to stabilize or to make more accurate our algorithm and that the 3D extension is
natural.
Acknowledgments

We thank the Service Fluides Numériques, Modélisation et Études of the Commissariat à l’Énergie Atomique
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